Receding Seas of Earth expansion *Richard Guy*

For me, the theory of Earth expansion had a prolonged period of gestation. I think it may have started in my elementary school days. I always loved geography and history, and was always good at both subjects. In the history books, I noted that when maps were used as illustrations of cities there were always two lines along the shores of these cities. One of these lines indicated the current shoreline and the other further inland depicted the old shoreline. This was a consistent pattern in these history books, and it gave me much food for thought. I pondered the significance of these two shorelines lines and always wondered why they had to be depicted as such.

Working as an Engineer in Britain I was employed for a time with a large American company that built oil refineries all around the world. During my time with them I worked in the structural steel department; I worked on refineries in Saudi Arabia, Fiji, Bahrain, Trinidad and Jamaica. I also worked on a refinery in Milford Haven, which is on the coast of Wales. I was on a site visit to the Milford Haven refinery one Monday morning. I took a train down from London to attend one of the usual weekly site meetings. A part of the project was the building of a jetty for the oil tankers to dock and discharge the crude oil they brought to the refinery from the Middle East. After the site meeting I was standing beside the foreman on the shore. By way of conversation I made an idle remark to him, "we are putting up a lot of steel towers by the sea so I suppose that the salt will be rusting them away in a few years". His response was worth its weight in gold; what he said inserted another dot in the gestation process towards Earth expansion. He remarked, "don't worry about it Richard, in time the sea will move out from here". I pondered his words for a moment and then asked, "how can you be so sure that this will happen?" Without any hesitation he explained what he meant. "Richard, I live around here and I know the history of this locale. When the Romans ruled Britain they built coastal roads all around Britain so they could move their army quickly from place to place. All the roads they built along the coast of Wales two thousand years ago are now twenty two miles inland".

That was a moment of enlightenment for me: a major milestone in the genesis of Earth expansion. I was elated for I had finally solved the riddle of the two coastlines in my history books back in elementary school. I learned this classic piece of the puzzle back in 1957 and I was constantly on the lookout for anything that could take me further along in my quest.

In 1961 I returned to Jamaica; the problem never far from my thoughts. I decided that I would revisit the beaches where I swam as a child so I could do a comparison of sea levels. I was returning to the location after 25 years. When I was growing up our entire family went to the beach every Sunday. We swam inside an enclosed area so we could swim in safety from the sharks that prowled the harbour. The sharks followed the ships that came into the harbour, so they could eat food thrown from the ships' galleys. Thus to swim outside the enclosure was not safe. The enclosure had a wooden walkway all around it where you could walk in safety and dive off in the deep end of the walkway into the enclosed area in safety. When I visited the beach as a young child I could not swim, so my father would wade into the deep end and allow me to dive off and he would catch me. That way I developed confidence in the water with the assurance that my father would be there to catch me. Of course my father was standing in water that was five feet deep.

When I arrived that day in 1961, the beach enclosure had all but disappeared. The walkway had been destroyed but the wooden piles that supported the walkway were still standing, and that immediately drew my attention. Where my father used to stand in five feet of water and let me dive, the water was now one foot deep. The sea had withdrawn over the years and dropped four feet in level. I was so elated at the observation that I took off my shoes and socks and waded out to the point where I used to dive so I could measure the height of the water. As I did this I looked down in the water and was amazed to see, for the first time in my life, a seahorse. I had always thought that seahorses were the actual size of horses, I did not know that they were such small creatures. The seahorse was significant for it was synonymous with me finding out that receding seas was a reality and that seahorses were just a few inches in height.

I also decided to visit other locations where sea levels were etched in my childhood mind. King Street is the main street in Kingston, the Capital of Jamaica. The street runs through the heart of downtown Kingston to the harbour. I recalled that as a child I drove with my father down King Street to the harbour on several occasions. When it was high tide in the harbour the water would flood the street as far inland as Harbour Street which was two blocks away from the sea. So for the last one hundred yards down to the harbour we were driving through sea water. I went to the sea wall and measured the water height. The water level did not rise high enough to flood the street above anymore, it had dropped four feet. Indeed it was the recession of the seas around the world that first opened my thoughts regarding Earth expansion.

A Father's Influence

Without a doubt my father was most influential in getting me interested in many subjects and enigmas. He was a practical engineer who worked for thirteen years on the Panama Canal construction, where he was taught railroad construction by the American engineers. He evidently had a quick grasp of the technicalities by the time he returned to Jamaica. The same American team he had worked with in Panama sent for him to come and construct railroads in the jungles of Honduras. They called him again to build railroads in the mountains of Haiti into Santo Domingo; and again to build railroads in Cuba, where he held the post of superintendent for the Baragua Sugar Company's railroad.

My father told me about many engineering accomplishments, such as the building of the great bridges. One thing he told me about which absorbed my interest for a long time was the story of the laying of the trans-Atlantic cables. After the cables were laid on the floor of the Atlantic they kept snapping. Each time the cables snapped it was expensive to repair and disruptive to trans-Atlantic communications. The experts of that era declared that undersea turbidity currents and landslides were what caused the cables to snap. I did not buy into that narrative; I could not see a sturdy cable being broken by an underwater landslide. I was ten years old at the time my father told me that story, but I remember thinking that reason was ridiculous. I often wondered why I felt that way, but growing up on an island and having such a close relationship with the sea, you learn a lot from the sea. For instance, in later years when I was deep in thought about the expanding earth, I recalled this important story. As boys we would go to the beach early in the mornings and swim all day. When we arrived in the early morning the water was very cold but that did not discourage us from swimming. We knew that to keep warm all we had to do was dive in and go down to the sea floor because it was always warmer down there. In later years I knew this elementary truth when the argument surfaced that the earth was getting hotter due to its expansion. I knew that as a small boy and was ahead of the curve. The year 1957 was declared the International Geophysical Year. It was during this significant period that the decision was made to conduct a survey of the ocean floor. Such a survey had never been undertaken, because prior to that time there was no appropriate method for doing so. Side sweep sonar had been used and perfected during WWII, and would prove an appropriate technology for the task. It was during the course of this survey that the Mid-Atlantic Ridge was discovered. The Ridge consists of two mountain ranges one mile apart running up the middle of the Atlantic Ocean. Prior to that everyone thought that the ocean floor was a level sand bed, not mountainous.

Let's get back to the mysterious snapping cables. What had been happening was that the cables were spanning a mile-wide underwater ridge and that was why they snapped and kept snapping. Since the discovery of the reason for the snapping cables nothing more has ever been heard about undersea landslides and/or turbidity currents. Another major project launched in 1957 was the MOHO (Mohorovicic Discontinuity) experiment. Scientists believed that the oldest sediment would be found in the middle of the Atlantic; and that those ancient sediments would tell them about the origins of civilizations. The objective of the MOHO project was to take core samples from the ocean floor in the middle of the Atlantic Ocean. The project went ahead as planned, but then the surprises started. There were no ancient sediments on the mid-Atlantic sea floor. What the scientists found was new sea floor coming up and pushing Europe away from North America by six feet every sixty years. So the Atlantic was getting wider and wider and the process was continuous.

Mounting evidence for expansion

Each little snippet of interesting information I obtained made my quest even more determined; and I was on the lookout for any other dots in the puzzle.

• XIV • Receding Seas of Earth expansion

Age (billion years)	6.0	4.5	3.5	2.8	Present	<i>Figure 1:</i> Earth expansion over the last 4.5 billion years
Size ratio	1.0	1.2	1.36	1.82	1.93	
Radius (miles)	2,060	2,500	2,750	3,750	3,980	

Figure 2: South American and Africa 150 million years ago. Sketch by author.

Figure 3: This Earthquake fault in Lampoc California destroyed an old Spanish Monastery in its path in 1811-1812; the same earthquake that destroyed New Madrid, Kansas. Photo by author

I was working in Tucson, Arizona for a few years in the seventies. I started building houses and selling them *On Spec*¹. I also bought land for housing development. The real estate law stipulated that if you built and sold more than five houses a year you had to get a real estate license. So I enrolled in a real estate class to meet the requirement for licensure. The first thing I learned was about the extent of earth movement and growth in Arizona and Texas. The lecturer cited a legal battle that had been going on for years in Texas over a mile of land growing between two ranches and each rancher was laying claim to the land but the land kept expanding, so the case was going on for years. The mysterious thing about the disputed land was that it was not on the map one hundred years ago.

I was driving across the United States from Ohio to Arizona with my three children, and we stopped in El Paso, Texas for the weekend. The hotel in which we stayed had guided tours into Juarez, Mexico, so I enrolled myself and the children in the tour. We were crossing the international bridge into Mexico and the tour guide stopped in the middle of the bridge and said, "this piece of land under the bridge is expanding". He continued, "both the United States and Mexico have been disputing ownership of the land for many years". He told us that recently President Lyndon Johnson had signed it over to Mexico as a goodwill gesture. He ended by saying that the land had increased to a width of six hundred feet.

Over the years, as far as Earth expansion is concerned, I have accumulated so much factual information that I have been able to write four books. I have material to write even more as added information has come to light. During the seventies I gave lectures on the Oasis Circuit in the United States on the topics of Earth expansion and receding seas. I have done my own investigations and experiments to test what I write and speak about. For example, having learnt about the extent of earth movement and growth in the American Southwest I decided to test the matter for myself. I bought a nine acre parcel in Tucson for the purpose of housing development. I decided to accompany the surveyors to establish the accuracy of the boundaries. Not one of the corner pegs of the nine acres of land was where it was supposed to be. The entry road to the property was on the property next door and had to be corrected, it was nine feet out of its supposed location. At that time I was also building low income houses for the federal government. Each lot had to be identified by a surveyor to ensure that we were building on the right lot. Over a period of years I built about four hundred houses and none of the lots

¹ Building Spec: meaning Building Speculation. When you build houses for selling without having a buyer.

ever closed correctly; they were always out. So I could readily attest to the fact that our earth was constantly moving and growing.

I was intrigued for a long time with Earth expansion which is how I came to the other startling realization. I was on a hike through the Tucson mountains and I was pondering the problem as I walked. I asked myself the question: If the earth was really expanding what manifestation would I look for to support that hypothesis? It was another 'eureka' moment for me because the answer was revealed to me at that instant. If the earth were expanding, sea levels must be falling. So I had the question and the answer to what I needed to know, so that I could speak and write with assurance, having done the research. That Saturday morning on the hillside in Arizona I realized the answer to a phenomenon that had been puzzling me for so many years.

I had researched sea levels and had copious notes in my archives of what was happening in New Jersey, New York, Connecticut and Rhode Island, to mention a few areas on the east coast of the United States. I attended the New York Public Library exhibition in 2009 entitled Three Hundred Years of the New York shoreline. The exhibition showed definitely that Manhattan and Brooklyn had grown a quarter mile of new shoreline in 300 years. There were photographs of the home of Captain Kidd, located at the eastern end of Wall Street, which stopped at Pearl Street on the East River. Today Pearl Street is one third of a mile from the East River and superseded by Water Street and the East Side Highway. On the west side of Manhattan, Broadway touched the Hudson 300 years ago, but today it is a third of a mile away in the heart of Manhattan. The twin towers of the World Trade Center were built on reclaimed land from the Hudson and the United Nations Building was built on 21 acres of land reclaimed from the East River.

Land is reclaimed in all harbours worldwide as soon as the sea recedes and the foreshore shallows. Southampton Harbour in Britain has had three successive harbours since the middle ages as the sea shallows making it impossible for large ships to navigate. All harbours worldwide have to be constantly dredged as ships keep getting larger and need more depth while the sea keeps getting shallower. The problem of dredging plagued the Romans at the port called Ostia 2,000 years ago. The Romans had to abandon Ostia after two Emperors tried to keep it open with dredging. Another harbour was built in the shape of a hexagon further west, but that too soon became shallow and was abandoned. Today when you fly from DaVinci Airport in Rome you can see both abandoned harbours. Today they are both three miles from the sea and twenty feet above sea level.

Earth Expansion Exchange REGISTRY :4
Friday

EXPANIPIN	6 EARTH E	XC
CALIFOR	2 NIA, U.S	3 1
	/	r
CONT	ENTS	
	· - / ·	
Member's addresses, phone numbe Earth Expansion.	rs, and statements concerning	
Members listed alphabetically		
Name	Country	Page
Dr. F. Ahmad	India	1
Mr. R. H. Belderson	England	2
Dr. B. E. Biermann	Natal South Africa	2
Mr. V. F. Blinov	U.S.S.R.	3
- Dr. S. Warren Carey	Tasmania	- 4
Dr. A. Y. Glikson	Australia	4
Dr. Masao Gorai	Japan	5
Ms. Helen Dee Grover	Austria	5
- Mr. Ralph A. Groves	U.S.A.	6
Mr. Richard W. Guy	Jamaica	7
Dr. Pascual Jordan	German Federal Republic	8
Mr. Neil Kenyon	England	8
Mr. Allen R. Lloyd	Singapore	8
Dr. Konrad H. R. Moelle	Australia	9
Dr. V. B. Neiman	U.S.S.R.	10,
Dr. H. G. Owen	England	11
Dr. Oakley Shields	U.S.A.	11
Dr. Thomas C. Van Flandern	U.S.A.	12
Dr. C. G. G. J. van Steenis	Holland	12
Mr. Klaus Vogel	German Democratic Republic	13
- Mr. H. Hugh Wilson	U.S.A.	14
Dr. W. L. Ziegler	England	15

- indicates founding members

Mr. Richard W. Guy

Writer - Consultant, Structural and Civil Engineer: Address: P.O. Box 144 Kingston 5, Jamaica W.I, Phone: 809-926-8772

My theory of the expanding Earth is based not on geological observation but rather on mathematics. I go along partially with the techtonic theory except that it does not answer all the questions.

Wy theory is that sea floor spreading adds dimension to the surface area of the Earth. The midatlantic rift is constantly cozing lava as well as the Red Sea and the floor of the California guif. The cracks in the ocean floor as well as on land are the expansion points. E.g., the river valleys all over the surface of the Earth. The Mississippi and the Colorado rivers in the United States as well as amany others are manifestations of the faulting and rifting that experience earthquake artion of greater frequency. Over millions of years, volcanoes and rifts have pumped inestimable amounts of lava or magma over the face of the Earth, e.g., Shake Kiver Canyon which is a fault in a one mile thickness of lava. All this lava adds dimension to the surface of the Earth.

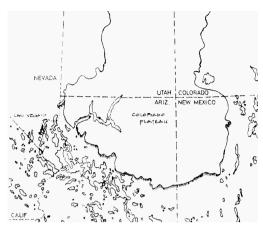
The interesting part comes when we look at the question of relative sea levels around the world. Man uses sea level as a datum for his land elevations. Current theories state that the land rises by rebound due to the absence of glaciers. I do not agree. I say that the land area expands both on land and under the sea dictating that the sea levels fall all around the Karth. This explains the recoding sea and the evidence to that effect all around the world. There is evidence of sea life on all continents on Rarth. Whales in Montreal, fossils in the mountains of france and Africa all signifying sea life in eras gone. My theory, therefore, states that the lands did not rebound but rather the land expanded and hence water levels fell. All around the world we see evidence of receding seas.

The most interesting application of this theory is when we look at the development of ancient civilizations to the present time. All ancient civilizations started in the high mountains and moved down river valleys to keep up with the receding meas. Examples of this are the incas in the high Andes, the Tibetans in the Himalayas, the Chineme, the great civilizations of the Tigris and Buphraytes, as well as the Indus valley civilizations. All ancient civilizations develop downards from high places. Noah's Ark is supposed to have landed on the top of Mt. Ararat in Turkey. That's a very interesting story, for Mt. Ararat is 16,945 feet above see level today. The Persian Gulf is now hundreds of miles further out than in ancient times. Figure 4: Sample pages from a copy of the Earth Expansion Exchange magazine published in June 1984. This magazine was published for a number of years and featured regular contributions from the members. The sample pages show the title page, a list of members and the statement of Richard Guy.

HANKE

Contacts with other Earth expansionists

I was contacted by the *Earth Expansion Exchange* which was established in California in 1980.¹ They asked me to write an article for the first edition of the magazine, which I gladly agreed to do. The 12 contributors to the magazine were names that had international reputations from several countries worldwide so I was honoured to be asked. I wrote that I had deduced that the earth was expanding and as a result the seas were receding. It was a simple treatise that embodied what I firmly believed. Among the contributors was Dr S. Warren Carey who wrote the book *The Expanding Earth*². I was in the process of writing my book which I intended to give the same title. Dr Carey published his book in 1976, and as a result of that I changed the title of my book to *Is Planet Earth Expanding*?³ My book was published in 1990. I checked the price on Amazon the other day and the book is selling for US\$240.00.


I have never wavered from what I wrote in that first edition and in subsequent issues and I still hold firm to the same concepts today, almost forty years later. In fact, I am more convinced today than I was then; a result of all the accumulated evidence I have compiled in support of the hypothesis. I have never wavered from my original concepts. For years I was in touch with the *Earth Expansion Exchange* and the contributors. I even received a visit, in Jamaica, from one of the contributors to the magazine who wanted to meet with me to discuss our varied viewpoints in arriving at the concept of Earth expansion.

I was invited to a conference at the University of Pennsylvania in 2010 to make a presentation on my concepts and to the conference in Erice, Sicily in 2011. For years I corresponded with some of the members from the *Earth Expansion Exchange*, then the website and the magazine went defunct and I lost track of all the participants. The expanding earth debate has been silent since then, so I am pleased to once again participate in a positive attempt to move the debate forward and keep the dialogue alive.

¹ The Exchange was administered by Mr. Ralph A. H. Groves of Santa Rosa, California. The opening letter to members in the first issue on the 1st March 1980, stated: "The Earth Expansion Exchange was founded to provide an international registry and facility for the exchange of information concerning the Earth Expansion Theory." The most well-known members included Prof. S. Warren Carey, Dr. Pascual Jordan, Dr. Lester C. King, Lawrence St. Clair Myers, Dr. Hugh G. Owen (see chapter in this book), Dr. Oakley Shields, Dr. Thomas C. Van Flandern and Klaus Vogel.

² See Carey (1976).

³ See Guy (1990).

Figure 5: The high plains, home of the dinosaurs. Sketch by author.

Expansion everywhere

What puzzles me most of all is the fact that up to this point in time the Earth expansion hypothesis has had nothing but rebuttals. We hear about global warming and sea level rise which is antithesis to all the evidence that exists. Global warming has been touted in the press on a daily basis for years, and the hype seems intent on whipping up a frenzy of hysteria so that people respond accordingly.

I am not a believer in conspiracy theories, but having observed this continued media hype I have been forced to think that there is something sinister about the way in which the Earth expansion theory is negated at every utterance in favor of global warming and rising seas. A British civil servant in Borneo read my book, The Mysterious Receding Seas¹, and he emailed me to say that he agreed with what I wrote. He said that the IMF and the World Bank officials who were dealing with the government of Borneo said that the seas are going to rise. As this civil servant was high up in the government I told him to advise the government of Borneo not to borrow any money because the seas were not going to rise. He got back to me with this response, "Richard they don't want to hear anything from me; they are being offered the money at such concessionary rates that they are borrowing left right and center". It was then that I remembered what I had read some years before that the international lending agencies were cutting their lending criteria so that small island developing states (SIDS) could borrow money to build coastal defenses against rising seas. They had set aside billions to lend to SIDS. We can now see the folly after all these years; the seas are not rising but the small island nations have to repay the loans, with interest. There are fifty two SIDS that are

¹ See Guy (2005)

• XIV • Receding Seas of Earth expansion

members of the United Nations. I am sure many of them will never be able to service those loans going forward, especially when time proves that the coastal defenses were an unnecessary expenditure.

Having accumulated these factual observances over the years, I am puzzled that Earth expansion has not been accepted as fact. Receding seas are of historical significance; the seas' recession since ancient times have given civilization its start and sustainability. First of all we should have discovered by this time that the seas are receding and that the earth is expanding. We should have discovered that all civilizations around the world developed downhill from the highest reaches of mountain tops.

We should have discovered all these things by now, except we were misled by Darwin. Darwin deduced that the land had risen from the sea; sea level, then as now, was never a moot point it has always been assumed to be a constant. Agassiz adopted Darwin's erroneous observation and based his theory of isostatic rebound on it. Now we all know that if the premise is wrong all arguments arising from it are wrong. So I say Darwin was wrong and hence Agassiz was also wrong; but here we are almost 200 years later labouring the same Darwinian illusion that sea levels are constant. We are in a time warp of ignorance - we know the earth is expanding, we see cracks appearing everywhere on earth every day, and still we hold fast to the concept of a static earth. We go to great lengths to propose subduction to justify that the earth's girth remains the same, even after we discover the expanding mid Atlantic ridge. We then say that the Pacific is contracting again to justify that the earth is not expanding. When we find that the Pacific is expanding, we introduce subduction, and so on and so forth. Now we are being assailed daily by the media hype saying that the sea levels are rising. As I said before, I am not one for conspiracy theories, but how can I not be suspicious of this colossal dearth of perception in a, so called, enlightened society. Darwin was hailed as an intellectual giant in a less enlightened age, we are evidently still at that age. Have we learnt nothing?

About the Contributor

Richard Guy is the author of 10 books on a variety of subjects. His writing, however, is mostly concerned with documenting his observations about Earth Expansion and Receding Seas Phenomena. Richard studied Structural Engineering in England and has worked in that profession in countries in both hemispheres. His travel to various locations as a practicing engineer has furnished him

with much of the observations he has made and written regarding Earth Expansion and Receding Seas. Richard has attended conferences in Sicily and The United States and presented papers which have been published in science magazines. He was a lecturer on the Oasis Lecture circuit in the United States for ten years. In recent years Richard has been involved as an engineer in the revision of codes in the Canadian North due to Global Warming. Richard plans to write other books.. This essay was first published as a chapter in the 2020 book, *The Hidden History of Earth Expansion*, which is widely available from good bookshops in both Hardback and Paperback editions, as well as a Google eBook.

The *Hidden History of Earth Expansion* presents the personal histories of some of the most well-known researchers into Earth expansion in 14 original essays. In addition to furnishing us with their personal histories, as they strived to explore the seemingly overwhelming evidence for confirmation of Earth expansion, the authors' highlight areas where further research is required.

The chapters expressly written for the book are:

Introduction •

The Science Innovators: an historical context	11
Stephen W. Hurrell	

• Chapter I •

From hunch to serious consideration	89
Hugh G. Owen	

Chapter II

My Memories and Ideas about the Expanding Earth 105 *Cliff Ollier*

• Chapter III •

An insight into self-organizing processes in geology with respect to Earth expansion 131 *Karl-Heinz Jacob*

Chapter IV •

Modelling the Earth: a brief history	147
James Maxlow	

• Chapter V • My work on the Expanding Earth Theory <i>Jan Koziar</i>	
• Chapter VI •	
My lifetime adventure with an expanding Earth Stefan Cwojdziñski	
• Chapter VII •	
Orogenesis on a growing Earth Carl Strutinski	
• Chapter VIII •	
From dinosaurs to Earth expansion Stephen W. Hurrell	
• Chapter IX •	
The Problem with Earth expansion <i>John B. Eichler</i>	
• Chapter X •	
A Personal History of Earth Expansion William C. Erickson	
• Chapter XI •	
How I got involved with Earth Expansion David Noel	
• Chapter XII •	

Should Plate Tectonics be replaced by Expanding Earth? 365 Zahid A. Khan and Ram Chandra Tewari

• Chapter XIII •

The Geotheory of Growing Earth: My Viewpoint of CosmicCore Kernel Transformation385Vedat Shehu

• Chapter XIV •

Receding Seas of Earth expansion	413
Richard Guy	
References	425
Index	465

- Afshordi, N. Mann, Robert, B. and Pourhasan, R. (2014). The Black Hole at the Beginning of the Time. Scientific American.311 (2) 38-43.
- Ager, D.V. (1986). Migrating fossils, moving plates and an expanding Earth. Modern Geology, 10:377-390.
- Ahmad, F. (1960). Glaciations and Gondwanaland. Geol. Surv. India. Rec. 86, 637-674.
- Ahmad, F. (1990). The bearing of paleontological evidence on the origin of the Himalayas. In: A. Barto-Kyriakidis (Ed). Critical aspects of the Plate Tectonics theory. Theophrastus Publication, Greece. 1, 129-142.
- Aitchinson, J. C. and 4 others. (2007). Shoshonites in southern Tibet record Late Jurassic rifting of a Tethyan intra-oceanic island arc. Jour. Geology. 115, 197-213.
- Alfvén, H. (1942). On the cosmogony of the solar system. Stockholms Observatoriums Annaler, 14, 2–1.
- Alfvén, H. (1954). On the origin of the solar system. Oxford University Press, New York.
- Alfvén, Hannes (1984). Cosmology: Myth or Science? For the Golden Jubilee of the Indian Academy of Sciences, representing a culture which has investigated cosmology for four millennia, edited in Jour. Astrophysics and Astronomy, No. 5, 79-98.
- Alfvén, H. (1992) Cosmology: myth or science? IEEE transactions on plasma science, vol. 20, no. 6, pp. 590–600.
- Alfvén, H. Arrhenius, G. (1972). Origin and evolution of the earth-moon system. The Moon, 5(1-2), 210–230.
- Alfvén, H. Arrhenius, G. (1976). Evolution of the solar system. NASA. Document number NASA-SP-345.
- Ali, J.R. and Aitchinson, J.C. (2005). Greater India. Earth Science Review, 72, 169-188.
- Allaby, M. (2013). A Dictionary of Geology and Earth Sciences. ISBN-13: 978-0199653065.

- Amirmardfar, R. (2012). Relationship Between Gravity and Bio-Evolution - The Increasing Gravity Theory. In Boschi, Cwojdzinski & Scalera - editors (2012). The Earth expansion evidence – A Challenge for Geology, Geophysics and Astronomy.
- Anderson, D.L. Yu-shen zhang, Tanimoto T. (1992). Plume heads, continental lithospere, flood basalts and tomography. W: Storey B. Alabaster T. Pankhurst R.J. (eds.): Magmatism and the Causes of Continental Break-up. Geol. Soc. Special. Publ. 68: 99-124.
- Anderson, S.F. et al. (1999). Mapping low density galactic: third helium Lyman-alpha forest. Astronomic . 117, 56-62. DOI: 10.1086/300698; e-print: astro-ph/9808105 | PDF.
- Antoshkina, A. Königshof, P. (2008). Lower Devonian reef structures in Russia: An example from the Urals. Facies. Doi: 10.1007/s10347-008-0135-7.
- Aretz, M. Webb, G.E. (2003). Western European and eastern Australian Mississippian shallow-water reefs: A comparison. In: Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, The Netherlands, 10-16 August, 2003 (Ed. T.E. Wong), Roy. Ned. Acad. Arts Sci. 433-442.
- Armijo, R. (1984). Quaternary extension of the Tibet plateau: field observation and technical implication. International Symposium Geology Himalayas.2, 17 (abstract).
- Arrhenius, G. De, B. R. & Alfvén, H. (1974). Origin of the ocean. In The Sea, volume vol. 5 (pp. 839–861). Wiley New York, NY.
- Badham, J.P.N. (1982). Strike-slip orogens an explanation for the Hercynides. J. Geol. Soc. London, 139, 493-504.
- Barcelo, C. Liberati, S. Sonego, S. Visser, M. (2009). Black Stars, Not Holes. Scientific American 301 February 46-52.
- Barnett, C.H. (1962). A suggested reconstruction of the land masses of the Earth as a complete crust. Nature, 195 (4840), 447-448.
- Becker, G. (1910). Age of the Earth. The Smithsonian institution, Washington.
- Beaudette, C.G. (2002). Excess Heat: Why Cold Fusion Research Prevailed. Oak Grove Press South Bristol, ME.
- Beloussov, V.V. (1979). Why don't I accept Plate Tectonics? EOS, 207-211.
- Berhe, S.M. (1999.) Ophiolites in Northeast and East Africa: implications for Proterozoic crustal growth. (London: Journal of the London Geological Society; V. 147; No. 1, 51-57.

- Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry. Geophysics. Geosystem. 52, doi 10.1029/2001 GC 000252.
- Blackett, P.M.S., Bullard, E., Runcorn, S.K. (eds.) (1965). A Symposium on Continental Drift. The Royal Society, London, x +323 pp.
- Blinov, V.F. (1973). On the hypothesis of Earth's expansion. (In Russian). FizikaZemli 1, 27-35.
- Bogolepow (1930), Die Dehnung de Lithoshare, Zeit, dt, geol. Ges., 82: 206-228.
- Boucot. J. and Gray, J. (1987). The Tethyan concept during the Paleozoic. In: K.G. McKenzie (Ed).Shallow Tethys 2. A. A. Balkema, Rotterdam, 31-50.
- Bouilhol, P. Jagoutz, O. Hanchar, J. M. and Dudas, F.O. (2013). Dating the India-Eurasia collision through arc magmatic records. Earth Planet Science Letter. 366, 163-175.
- Boschi, Cwojdzinski & Scalera editors (2012). The Earth Expansion Evidence: A Challenge for Geology, Geophysics and Astronomy. Selected Contributions to the Interdisciplinary Workshop held in Erice, Sicily, Italy, 4-9 October 2011 at the Ettore Majorana Foundation and Centre For Scientific Culture.
- Brezinski, D.K. Cecil, C.B. Skema, V.W. Stamm, R. (2008). Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period. Palaeogeogr. Palaeoclim. Palaeoecol. 268, 143-151.
- Bridges, L.W. (2002). Our expanding Earth. The ultimate cause. Oran V. Siler Printing. Denver Colorado.
- Brownlee, R. & Cox, A. (1961). Early solar evolution. Sky and Telescope, (pp. 252–256).
- Brosske (1962). Wachst die Erde mit Naturkatastrophen? Die 'Expansions-Theorie' (Does the Earth grow with natural catastrophes? The expansion theory.). 'Sanus' L. Brosske, Abtlg. Verlag, Dusseldorf-Benroth 41.
- Brunnschweiler, R.O. (1983). Evolution of Geotectonic Concepts in the Past Century. In: Carey, S.W. (ed.): Expanding Earth Symposium. Sydney 1981, University of Tasmania, 9-15.
- Buchan, K.L. Ernst, R.E. (2004). Diabase dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada Map 2022A, scale 1:5,000,000, accompanying report 39 pp.
- Bullard, E. (1975). The emergence of plate tectonics: a personal view. Annual Review of Earth and Planetary Sciences, 3(1), 1-31.

- Bullard, E.B. Everett, J.E. and Smith, A.G. (1965). The fit of the continents around the Atlantic. Philosophical Transaction of the Royal Society of London, A258, 41-51.
- Burrett, C., Berry, R. (2000). Proterozoic Australia—Western United States (AUSWUS) fit between Laurentia and Australia, Geology 28, 103-106.
- Carey, S.W. (1955). Wegener's South America–Africa Assembly, Fit or Misfit? Geological Magazine, 92(3), 196-200. doi:10.1017/S0016756800063548.
- Carey, S.W. (1958). The tectonic approach to continental drift. In: Carey S. Warren (Ed). Continental Drift A Symposium University of Tasmania, Hobart 177-355. Reprinted 1959.
- Carey, S.W. (1961). Palaeomagnetic evidence relevant to a change in the Earth's radius (a reply to Cox & Doell). Nature, 190 (4770), 36-36.
- Carey, S.W. (1976). The Expanding Earth. Developments in Geotectonics, 10, Elsevier, Amsterdam.
- Carey, S.W. (1978). A philosophy of the Earth and Universe. Papers and Proceedings of the Royal Society of Tasmania, 112, 5-19.
- Carey, S.W. (Editor) (1983). The Expanding Earth. A Symposium (Ed. S.W. Carey), University of Tasmania.
- Carey, S.W. (1983). Tethys and her forebears. In: The Expanding Earth. A Symposium (Ed. S.W. Carey), University of Tasmania, 169-187.
- Carey, S.W. (1988). Theories of the Earth and Universe: A History of Dogma in the Earth Sciences. Stanford University Press, Stanford, California, xviii+413 pp. ISBN 08047 1364 2.
- Carey, S.W. (1996). Earth, Universe, Cosmos. University of Tasmania, Hobart, pp. 204.
- Carey, S.W. (2000). Earth, Universe, Cosmos. 2nd Edition. University of Tasmania, Hobart.
- Cataldi, G. & D., Straser, V. (2016). Solar activity correlated to the M7.0 Japan earthquake occurred. At New Concepts in Global Tectonics Journal, V. 4, No. 2, p. 79-85.
- CGMW & UNESCO (1990). Geological Map of the World. Commission for the Geological Map of the World, Paris.
- Chatterjee, S., Hotton III, N. (Editors) (1992). New Concepts in Global Tectonics. Texas Tech University Press. ix+ 449 pp.
- Chatterjee, S., Scotese, C.R. (2010). The wandering Indian plate and its changing Biogeography during the Late Cretaceous-Early Tertiary period. In: S. Bandyopadhyay (Ed). New Aspects of Mesozoic Biogeography. Springer-Verlag, Germany, 105-126.

- Chatterjee, S., Bajpai, S. (2016). India's northward drift from Gondwana to Asia during the Late Cretaceous-Eocene. Proc. Indian National Science Academy, 82, 479-487.
- Chatterjee, S., Goswami, A. Scotese, C.R. (2013). The longest voyage: Tectonic, magmatic and paleoclimatic evolution of the Indian plate during its northward fright from Gondwana to Asia. Gondwana Research, 23,238-267.
- Choi, D.R. (2010). The January 2010 Haiti Seismic Disaster Viewed from the Perspective of the Energy Transmigration Concept and Block Tectonics. NCGT Newletter, 54,. 36-54.
- Choi, D.R. Maslov, L. (2010). Global seismic synchronicity. NCGT Newletter, 55, 66-74.
- Choi, D.S. Showman, A.P. Brown, R.H. (2009). Cloud features and zonal wind measurements of Saturn's atmosphere as observed by Cassini/VIMS. J. Geophys. Res. 114, E04007. Doi: 10.1029/2008JE003254.
- Ciechanowicz, S., Koziar, J. (1994). Possible relation between Earth expansion and dark matter. In: F. Selleri, M. Barone (eds.), Proceedings of the International Conference "Frontiers of Fundamental Physics" (Olympia, Greece, 27–30 September, 1993). Plenum Press, New York and London, pp. 321–326.
- Close, F. (2004). Particle Physics, a very short introduction. (Oxford: Oxford University Press. 160. ISBN 0-19 280434-0.
- Colbert, E.H. (1973). Continental drift and the distributions of fossil reptiles. In: D.H. Tarling and S.K. Runcorn (Eds). Implications of continental drift to the Earth Sciences. Academic Press, 393-412.
- Colbert, E.H. (1984). Mesozoic reptiles: India and Gondwanaland. Indian Journal Science, 11, 25-37.
- Colpron, M., Nelson, J.L. (2009). A Palaeozoic Northwest Passage: incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera. Geol. Soc. London, Spec. Publ. 318/1, 273-307. Doi: 10.1144/SP318.10.
- Condie, K.C. (1997). Plate tectonics and crustal evolution. Fourth Edition, (Oxford: Butterworth-Heinneman, An Imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 BDP 200 and Wheeler Road, Burlington, MA, USA. 282.
- Copper, P. (2002). Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr. Palaeoclimat. Palaeoecol. 181, 27-65.

- Copper, P. Scotese, C.R. (2003). Megareefs in Middle Devonian supergreenhouse climates. Geol. Soc. Am. Spec Paper 370, 209-230.
- Cox, C.B. (1975). Distribution of Triassic tertapods families. In: D.H.Tarling and S. K. Runcorn (Eds). Implications of continental drift to the Earth Sciences. Academic Press, 369-371.
- Crawford, A.R. (1979). Gondwanaland and the Pakistan Region. Pp. 103-110 in Geodynamics of Pakistan, Ed. A. Farah and K.A. De Jong. Geo1ogical Survey of Pakistan, Quetta.
- Creer, K.M. (1965). An expanding Earth? Nature, London 205, 539-544.
- Cwojdziński, S. (1995) Recenzja: R.Dadlez, W.Jaroszewski. Tektonika. Wyd. Nauk. PWN. Prz. Geol. 43, 3: 255 - 258. /Review of the book R.Dadlez, W.Jaroszewski. Tektonics. Sci Publ.PWN/.
- Cwojdziński, S. (2001) Czy mo?liwa jest dyskusja naukowa w geotektonice. Przeg. Geol. 49, 10/1: 856 857 / Is the discussion in geotectonics possible ? Geol. Rev. 49. 10/1: 856-857.
- Cwojdziński, S. (2003). The Tectonic Structure of the Continental Lithosphere Considered in the Light of the Expanding Earth Theory -A Proposal of a New Interpretation of Deep Seismic Data. Polish Geol. Inst. Spec. Papers, 9, 1-80.
- Cwojdziński, S. (2004). Mantle plumes and dynamics of the Earth interior towards a new model. Prz. Geol. /Geol. Review 52.8/2:817 826.
- Cwojdziński, S. (2012). Geological Evolution of the Sudety Mts. (Central Europe) on the Expanding Globe. In: The Earth Expansion Evidence, A challenge for geology, geophysics and astronomy. Selected Contribution to the Workshop, held in Erice, Sicily, Italy (4-9 October 2011). 263-273. Post-conference publication edited by GiacarloScalera (editor in chief), EnzoBoschi, and Stefan Cwojdziński. Rome, 492.
- Cwojdziński, S. (2016). History of a discussion: selected aspects of the Earth expansion v. plate tectonics theories. Geological Society, London, Special Publications, 442, SP442-24.
- Cwojdziński, S., Koziar, J. (1995) Konferencja mi?dzynarodowa -Zagadnienia ekspanduj?cej Ziemi. Wrocław-Sosnówka, 14-17.11.1994. Prz.Geol. 43, 4: 349 - 351.
- Czechowski, L. & Leliwa-Kopystynski, J. (2013). Remarks on the Iapetus' bulge and ridge. Earth Planets Space, 65, 929-934. Doi: 10.5047/eps.2012.12.008.
- Daly, R.A. (1917). Metamorphism and its phases. Geol. Soc. Am. Bull. 28, 375-418.

- Davydov, V.I. (2016). Biotic paleothermometry constrains on Arctic plates reconstructions: Carboniferous and Permian (Zhokhov Island, De-Longa Group Islands, New Siberian Archipelago. Tectonics, 35, 2158-2170. Doi: 10.1002/2016TC004249.
- Dearnley, R. (1965). Orogenic fold-belts, convection and expansion of the Earth. Nature, 206 (4991), 1284-1290.
- De Celles, P.G. Kapp, P. Gehrels, G. Ding, L. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33, 824-849.
- De Hilster, D. (2008). The Growing Earth. p. 24. At: <www.dehister.com/docs/TheGrowingEarth.ppt>, 77.
- De Lury, J.S. (1931). The auto-traction hypothesis of crustal dynamics and mechanics. Science (No. 1900), 73, 590.
- De Lury, J.S. (1941). Correlation of schistosity and tectonic theory. Am. J. Sci. 239, 57-73.
- Dewey, J.F. (2015). A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'. Phil. Trans. R. Soc. A, 373(2039), 20140227.
- Dewey, F., Bird, J.M. (1970). Plate Tectonics and geosynclines: Tectonophysics, 10, 624-638.
- Dewey, J.F. Shackleton, R.M. Chang C. Sun Yin. (1988). The tectonic evolution of the Tibetan plateau: Phil. Trans. Royal Soc. London, 379-413.
- Dickins, J.M. (1994). The nature of the oceans or Gondwanaland, fact and fiction. In: Gondwana Nine. A. A. Balkema, Netherland, 387-396.
- Dietz, R.S. (1961). Continent and Ocean Basin Evolutionby Spreading of the Sea-Floor. Nature, London 190, 854-857.
- Dietz, R.S. Holden, J.C. (1970). Reconstruction of Pangea: break-up and dispersion of continents. Permian to Recent.J.Geophys.Res. 75: 4,939-4,956.
- Dilek, Y. and Robinson, P.T. (2003). Ofiolites in Earth History: Geological Society of London Special Publication 218 edited by Dilek, Y.& Robinson, P. T. 723 p.
- Dilek, Y. Shallo, M. and H. Furnes. (2005). Rift-drift, seafloor spreading and subduction tectonics of Albanian ophiolites. International Geology Review V. 47. (New York: Taylor & Francis Group. 147-176.
- Dimitriev, L.V. Vinogradov, A.P. and Udentsev, G.B. (1971). Petrology of ultrabasic rocks from rift zones of The Mid-Indian Ocean Ridge. Philosophical Transactions of the Royal Society of London. Series A

Mathematical and Physical Sciences, V. 268, No. 1192. A discussion on Petrology of igneous and Metamorfic rocks from the Oceanic Flore. (London: The Royal Society,). 403-408.

- Ding, L., Maksatbek, S., Cai, F.L., Wang, H.Q., Song, P.P., Ji, W.Q., Zhang, L.Y., Mohammad, Q., Upendra, B. (2017). Processes of initial collision and suturing between India and Asia. China Earth Sciences, 60, 635-657.
- Doglioni, C., Green, D.H., Mongelli, F. (2005). On the shallow origin of hotspots and the westward drift of the lithosphere. Geol. Soc. Am. Spec Paper 388, 735-749. Doi: 10.1130/2005.2388(42).
- Doglioni, C., Carminati, E., Cuffaro, M., Scrocca, D. (2007). Subduction kinematics and dynamic constraints, Earth-Science Reviews 83, 125– 175.
- Doglioni, C., Carminati, E., Crespi, M., Cuffaro, M., Penati, M., Riguzzi, F. (2015). Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere. Geosci. Frontiers, 6, 401-418.
- Dorschner, J. (1986). Planeten Geschwister der Erde? Urania Verlag, Leipzig, 128p.
- Dumoulin, J.A., Harris, A.G., Gagiev, M., Bradley, D.C., Repetski, J.E. (2002). Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia. Geol. Soc. Am. Spec. Paper 360, 291-312.
- Drayson, A. (1859). The Earth we inhabit, its past, present, and probable future.
- du Toit, A.L. (1937) Our Wandering Continents: An Hypothesis of Continental Drifting, Oliver & Boyd, London, UK.
- Dziewoński, A.M., Anderson, D.I. (1984). Seismic tomography of the Earth's interior. American Scientist. 72: 483-494.
- Egyed, L., (1956). Determination of changes in the dimensions of the Earth from palaeogeographical data. Nature, 178, n.4532, 534-534.
- Egyed, L., (1957). A new dynamic conception of the internal constitution of the Earth. Geol. Rundsch. B. 46, p. 101–121.
- Eichler, J.B. (2011). A New Mechanism for Matter Increase Within the Earth. Nexus, April-May, 43-48; 82.
- Eichler, J.B. (2015). Rhetoric and paradigm change in science: Three case studies. Master's thesis, University of Arkansas at Little Rock.
- Eichler, J.B. (In press). An Infinite Universe.

- Eisbacher, G.H. (1983). Devonian-Mississippian sinistral transcurrent faulting along the cratonic margin of western North America A hypothesis. Geology, 11, 7-10.
- Eisenhower, D. (1961). President Dwight Eisenhower Farewell Address. https://www.c-span.org/video/?15026-1/president-dwight-eisenhower-farewell-address.
- Elbeze, A.C. (2013). On the existence of another source of heat production for the earth and planets, and its connection with gravitomagnetism. Published online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825064/ p.18
- Ellis, M. Watkinson, A.J. (1987). Orogen-parallel extension and oblique tectonics: the relation between stretching lieations and relative plate motions. Geology, 15, 1022-1026
- Elliston, J. (2003). Professor S.W. Carey's struggle with conservatism. In Scalera, G and Jacob, K-H. (Editors) 2003. Why Expanding Earth? A book in honour of Ott. Christoph Hilgenberg. INGV publisher Roma 97-114. (a reprint from Newsletters. The Australian Geologist, 125).
- England, P. Houseman, G. Sonder, L. (1985). Length scales for continental deformation in convergent, divergent, and strike-slip environments: analytical and approximate solutions for a thin viscous sheet model. J. Geophys. Res. 90 (No. B5), 3551-3557
- England, P. Jackson, J. (1989). Active deformation of the continents. Earth Planet. Sci. Ann. Rev. 17, 197-226.
- Erickson, F.P. (2008). Absolute space, absolute time and absolute motion. 2678. Publisher: Xlibris, ISBN: 978-1599261171.
- Erickson, W.C. (1980). Orgonomic Geophysics: The Earth as an Orgonotic System. Unpublished but posted online at Erickson (2001).
- Erickson, W.C. (1982). Necessary Giants: Gravity and the Evolution of Dinosaurs. Unpublished.
- Erickson, W.C. (1985). Rogue Scientist from Down Under. Unpublished but posted online at Erickson (2001).
- Erickson, W.C. (1988). Ever Since Wegener: A Brief History of the Expanding Earth Hypothesis. Unpublished but posted online at Erickson (2001).
- Erickson, W.C. (1989). Bipedal Hopping and the Origin of Dinosaurs. Unpublished but posted online at Erickson (2001).
- Erickson, W.C. (1990). On the Origin of Dinosaurs and Mammals. Unpublished but posted online at Erickson (2001).
- Erickson, W.C. (2001). Bill Erickson's Earth Science Web Page. https://www.frontier-knowledge.com/earth

- Ernst, W.G. (1971). Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contrib. Min. Petr. 34, 43-59.
- Ernst, W.G. (1973). Blueschist metamorphism and P-T regimes in active subduction zones. Tectonophys. 17,255-272.
- Ernst, W.G. (1993). Metamorphism of Franciscan tectonostratigraphic assemblage, Pacheco Pass area, east-central Diablo Range,, California Coast Ranges. Geol. Soc. Am. Bull. 105, 618-636.
- Eskola, P. (1939). Die metamorphen Gesteine. In: Die Entstehung der Gesteine. Ein Lehrbuch der Petrogenese. (Ed. C.W. Correns), Julius Springer, Berlin (Reprint 1970), 263-407.
- Evans, J.V. (1958). Insect distribution and continental drift. 134-141. In Carey (1958).
- Ewing, M., Heezen, B.C. (1956). Some problems of Antarctic submarine geology. Geophys. Monogr, 1(462), 75-81.
- Fairbridge, R.W., (1964). Thoughts about an expanding globe. In: Subramanion, A.P. and Balakrishna, S. (eds.): Advancing Frontiers in Geology and Geophysics. Osmania University Press, Hyderabad, 59-88.
- Farley, K.A. Neroda, E. (1998). Noble Gases in the Earth's Mantle. Annual Review of Earth and Planetary Sciences.Vol. 26: 189-218 From:

http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.26.1.189

- Felt, H. (2012). Soundings: The story of the remarkable woman who mapped the ocean floor. ISBN: 978-0-8050-9215-8.
- Fernandez, M.S. Khosla, A. (2015). Para taxonomic review of the Upper Cretaceous dinosaurs eggshell belonging to the family Megaloolithidae from India and Argentina. Historical Biology, 27, 158-180.
- Ferry, J. (1992). Regional metamorphism of the Waits River Formation, Eastern Vermont: delineation of a new type of giant metamorphic hydrothermal system. J. Petr. 33, 45-94.
- Fleck, L. (1981). Genesis and development of a scientific fact. University of Chicago Press.
- Forsyth D., Uyeda, S. (1975). On the Relative Importance of the Driving Forces of Plate Motion, Geophysical Journal of the Royal Astronomical Society 43, 163-200.
- Fox, S.W., Dose, K. (1977). Molecular Evolution and the Origin of Life (Revised ed.). Marcel Dekker, New York, 370 pp.

- Fox, S.W, Harada, K., Kendrick, J. (1959). Production of spherules from synthetic proteinoid and hot water: Science 129: 1221-1223.
- Frankel, H. (2012). The Continental Drift Controversy. A Four Volume Set. Cambridge University Press.
- Frisch, W. Meschede, M. (2005). Plattentektonik. Kontinentverschiebung und Gebirgsbildung.Wissenschaftliche Buchgesellschaft, Darmstadt, 196p.
- Galilei, G. (1638). Two New Sciences. Holland.
- Ganapathy, R. Keays, R. R. Laul, J. & Anders, E. (1970). Trace elements in Apollo 11 lunar rocks: Implications for meteorite influx and origin of moon. Geochimica et Cosmochimica Acta Supplement, vol. 1, p. 1117.
- Ganapathy, R. & Anders, E. (1974). Bulk compositions of the moon and earth, estimated from meteorites. In Lunar and Planetary Science Conference Proceedings, vol. 5, pp. 1181–1206.
- Gansser, A. (1973). Facts and theories on the Andes. J. Geol. Soc. London, 129, 93-131.
- Gansser, (1991). Facts and theories on the Himalayas. Eclogie. Geol. Helv. 84, 33-59.
- Gapais, D. Le Corre, C. (1980). Is the Hercynian belt of Brittany a major shear zone? Nature, 288 (No. 5791), 574-576.
- Garzanti, E. Hu, X. (2014). Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan related uplift? Gondwana research, doi: 10.1016/j.gr.2014.1003.1010.
- Gibbons, A. S. and 4 others. (2015). A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys.Gondwana research, doi: 10.1016/ j.gr.2015.1001.1001.
- Gilliland, W.N. (1964). Extension of the theory of zonal rotation to explain global fracturing. Nature, 202, 1276-1278
- Gold, T. (1987). Power from the Earth. Dent, London. Pp. 208.
- Gold, T. (1988). Das Jahrtausend des Methans. Die Energie der Zukunft – unerschöpflich, umweltfreundlich.Econ Verlag Düsseldorf, Wien, 256p
- Gold, T. (1989). New ideas in science. J. Sci. Explor. 3/2, 103-112
- Gong, E. Zhang, Y. Guan, C. Chen, X. (2012). The Carboniferous reefs in China. J. Palaeogeogr. 1, 27-42. Doi: 10.3724/SP.J.1261.2012.00004.

- Goswami, A. and 4 others. (2013). A troodontid dinosaur from the latest Cretaceous of India. Nature Communications, 4, 1-5.
- Glenn, W. (1982). The road to Jaramillo. Critical years of the revolution in Earth Science. Stanford University Press. 459 pp.
- Greenfield, J. (1974). Wilhelm Reich vs. the U.S.A. W.W. Norton & Company, New York, 380 pp.
- Gurnis, M. Hall, C. Lavier, L. (2004). Evolving force balance during incipient subduction. Geochemistry Geophysics Geosystem, 5, 1-31.
- Gutenberg, B. (1951). Internal constitution of the Earth, volume 7. Dover Publications Inc.
- Guy, R. (2005). The Mysterious Receding Seas. ISBN: 978-1413439922
- Gurnis, M. Yang, T. Cannon, J. Turner, M. Williams, S. Flament, N. Müller, R.D. (2018). Global tectonic reconstructions with continuously deforming and evolving rigid plates. Computers & Geosciences, 116, 32-41. Doi: 10.1016/j.cageo.2018.04.007
- Hall, C.E. and 6 others. (2003). Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 212, 15-30.
- Hall, R. (1996). Reconstructing Cenozoic SE Asia. In: Tectonic Evolution of SE Asia (Eds. R. Hall, D.J. Blundell), Geol. Soc. London Spec. Publ. 106, 153-184
- Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353-431.
- Hall, R. (2012). Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophys. 570-571, 1-41. Doi: 10.1016/j.tecto.2012.04.021.
- Hallam, A. (1983). Great Geological Controversies. Oxford University Press.
- Hambry, M. J. & Harland, W. B. eds. (1981). Earth's Pre-Pleistocene glacialrecord. Cambridge: Cambridge University Press, London.
- Hanmer, S. Vigneresse, J.L. (1981). Mis en place de diapirs syntectoniques dans la chaîne hercynienne: Exemple des massifs leucogranitiques de Locronan et de Pontivy (Bretagne Centrale). Bull. Soc. Geol. France, S7-XXII/2, 193-202. Doi: 10.2113/gssgfbull.S7-XXII.2.193
- Hamilton, W.B. (1979). Tectonics of the Indonesian Region, US Geological Survey Professional Paper 1078. United States Government Printing Office, Washington, DC, ix + 345 pp.

- Hamilton, W.B. (2011). Plate Tectonics began in neoproterozoic time, and plumes from deep mantle have never operated. Lithos, vol. 123, no. 1-4, pp. 1–20.
- Hamilton, W.B. (2019). Toward a myth-free geodynamic history of Earth and its neighbors, Earth-Science Reviews 198, 102905.
- Harrison, C.G.A. (2016). The present day number of tectonic plates. Earth, Planet and Space, 68, doi: 10.1186/s40623-016-0400-x.
- Heezen, B.C., (1959a). Geologie sous-marine et deplacements des continents. Colloques Internationaux du Centre National de la Recherche Scientificue, N° LXXXIII, Paris, 295-302.
- Heezen, B.C., (1959b). Paleomagnetism, continental displacements, and the origin of submarine topography. International Oceanographic Congress. Reprints of Abstracts: Am. Assoc. Advance. Sci.
- Heezen, B.C. (1960). The rift in the ocean floor. Scientific America, 203, 98-110.
- Heezen, B.C., Ewing, M. (1961). The mid-oceanic ridge and its extension through the Arctic Basin: Geology of the Arctic.
- Heezen, B.C., Tharp, M. (1965). Tectonic fabric of the Atlantic and Indian Oceans and continental drift. Philosophical transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 258(1088), 90-106.
- Heezen, B.C., Tharp, M. (1966). Physiography of the Indian Ocean.
- Heirtzler, J.R. (1977). A Minority View in Geophysics, Science 196, 778.
- Hess, H.H. (1962). History of Ocean Basins. In Engel, A.E.J. James, H.L. and Leonard, B.F. (Editors). Petrologic Studies. A volume in honour of A.F.B. Boddington. Geological Society of America 599-620.
- Herndon, J.M. (2005). Whole-Earth decompression dynamics. Curr. Sci. 89/11, 1937-1941.
- Herndon, J.M. (2011). Geodynamic basis of heat transport in the Earth. Curr. Sci. 101/11, 1440-1450.
- Hilgenberg, H. (2003). The life and work of Ott Christoph Hilgenberg: as seen by his daughter, Helge Hilgenberg. In Scalera, G., Jacob, K-H., (Editors) (2003). Why Expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV publisher Rome. 465 pp with extensive bibliography.
- Hilgenberg, O.C. (1933). Vom Wachsenden Erdball. (On Growing Earth) Berlin Giessmann und Bartsch 56 pp.
- Hilgenberg, O.C. (1933/2003). The Formation and development of Earth: contraction or expansion. In: Why Expanding Earth? (Eds)

Scalera, G. Jacob, K. Proceedings of the Lautenthal Colloquium held on May 26, 2001 in honor of Ott Christoph Hilgenberg. Rome (2003).

- Hilgenberg, O.C. (1960?/2003). The formation and development of the Earth: contraction or expansion? (Fragments from the last unpublished manuscript). In Giancarlo Scalera, and Karl-Heinz Jacob (eds): Why Expanding Earth? A book in honour of O.C. Hilgenberg. Proceedings of the Lautenthal Colloquium, held on May 26, 2001. INGV publisher Rome, 53-64.
- Hilgenberg, O.C. (1962). Rock magnetism and the Earth's palaeopoles. Geofisica pura e applicata, 53(1), 52-54.
- Hilgenberg, O.C. (1966). Die Paläogeographie der expandierenden Erde vom Karbon bis zum Tertiär nach paläomagnetischen Messungen. Geologische Rundschau, 55(3), 878-924.

Hilgenberg, O.C. (1967/2015). Why Earth expansion? Rheologic evidence of the Earth's expansion. https://www.dinox.org/publications/Hilgenberg1967.pdf

- Hilgenberg, O.C. (1974). Geotektonik, neuartig gesehen. Geotektonische Forschungen (Geotectonic Research), 45, Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 194p.
- Hodgin, R.C. (2008). NASA snaps photo of remote planet. Information by (November 13, 2008). At: http://www.tgdaily.com/trendwatchfeatures/40192-nasa-snaps-photo-of-remote-planet-25-light-yearsaway-using-visible-light-
- Holland, H.D. (1984). The Chemical Evolution of the Atmosphere and Oceans. Princeton, N.J.: Princeton University Press.
- Hole, M. J. & Natland, J. H. (2019). Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics. Earth Science Reviews, [Earth_2018_391]. https://doi.org/10.1016/j.earscirev.2019.02.011
- Holmes, A. (1913). The Age of the Earth.
- Holmes, A. (1931). Radioactivity and Earth Movements. Transactions of the Geological Society of Glasgow, 18, 559-606, 1931, https://doi.org/10.1144/transglas.18.3.559.
- Holmes, A. (1944). Principles of Physical Geology. Thomas Nelson, xii+532, reprinted 1945, revised and expanded 1965.
- Holmes, A. (1965). Principles of Physical Geology. Second edition. Nelson, London, pp.1288.
- Holmes, D., Holmes, A. (1978). Principles of Physical Geology. Third edition.

- Hooft, G. (2007). The conceptual basis of quantum field theory. In: The Oxford Handbook of Philosophy and physics. (Ed. Robert Batterman, p. 661-729).
- Hoshino M. (1998). The Expanding Earth: Evidence, Causes and Effects. Tokai University Press, 295 pp.
- Hu, X. and 5 others. (2016). The timing of India-Asia collision onset Fact, theories, controversies. Earth Science Review, 160, 264-299.
- Huismans, R.S., Beaumont C. (2014) Rifted continental margins: The case for depth-dependent extension, Earth and Planetary Science Letters 407 148-162.
- Hurrell, S.W. (1994). Dinosaurs and the Expanding Earth. One-off Publishing, 222 pp. ISBN 0952260301
- Hurrell, S.W. (2011). Dinosaurs and the expanding Earth: One explanation for the gigantic sizes of some pre-historic life. U.K.: One off, 3rd edition. ISBN 9780952 26037 0
- Hurrell, S.W. (2011). Ancient life's gravity and its implications for the expanding Earth. (Extended abstract). In Extended Abstracts of the 37th Interdisciplinary Workshop of International School Geophysics. Sicily. "The Earth Expansion Evidence: A challenge for Geology, Geophysics and Astronomy" Volume: Pre-conference book Extended abstracts. DOI: 10.13140/2.1.1522.4643.
- Hurrell, S.W. (2012). Ancient Life's Gravity and its Implications for the Expanding Earth. In The Earth expansion evidence – A Challenge for Geology, Geophysics and Astronomy - Selected Contributions to the Interdisciplinary Workshop of the 37th International School of Geophysics. Aracne Editrice, Roma. https://www.earth-prints.org/handle/2122/8838
- Hurrell, S.W. (2014). A New Method to Calculate Palaeogravity Using Fossil Feathers. NCGT Journal, v. 2, no. 3, September, 2014. p 29-34.
- Hurrell, S.W. (2017). Early speculations about Earth expansion by Alfred Wilks Drayson (1827-1901) and William Thorp (1804-1860). https://dinox.org/hurrell2017
- Hurrell, S.W. (2018). A palaeogravity calculation based on weight and mass estimates of Giraffatitan (=Brachiosaurus) brancai. https://dinox.org/hurrell2018a
- Hurrell, S.W. (2019a). Palaeogravity calculations based on weight and mass estimates of four Tyrannosaurus rex specimens. https://dinox.org/hurrell2019a

- Hurrell, S.W. (2019b). A palaeogravity calculation based on weight and mass estimates of Acrocanthosaurus atokensis. http://dinox.org/hurrell2019b
- Hurrell, S.W. (2019c). Palaeogravity calculations based on weight and mass estimates of two Coelophysis bauri specimens. http://dinox.org/hurrell2019c
- Hurrell, S.W. (2019d). A Palaeogravity calculation based on weight and mass estimates of Gigantoraptor erlianensis. http://dinox.org/hurrell2019d

Hurrell, S.W. (2019e). A Palaeogravity calculation based on weight and mass estimates of Ankylosaurus magniventris. http://dinox.org/hurrell2019e

- Hurrell, S.W. (2019f). A Palaeogravity calculation based on weight and mass estimates of Euoplocephalus tutus. http://dinox.org/hurrell2019f
- Hurrell, S.W. (2019g). A Palaeogravity calculation based on weight and mass estimates of Megalosaurus bucklandii. http://dinox.org/hurrell2019g
- Hurrell, S.W. (2019h). Palaeogravity calculations based on weight and mass estimates of Paraceratherium transouralicum. http://dinox.org/hurrell2019h.
- Hutton, J. (1788). Theory of the Earth: or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Royal Society of Edinburgh.
- Hutton, J. (1795). Theory of the Earth. Volume I.
- Hsü, K. (ed.), (1982). Mountain Building Processes. Academic Press, London, pp.263.
- Ingersoll, R.V. (1988). Tectonics of sedimentary basins. Geol. Soc. Am. Bull. 100, 1704-1719.
- Irving, E. (1977). Drift of major continental blocks since the Devonian. Nature, 270, 304-309.
- Ishikawa, A., Pearson, D.G., Dale, C.W. (2011). Ancient Os isotope signatures from the Ontong Java Plateau lithosphere: tracing lithospheric accretion history, Earth and Planetary Science Letters 301 159-170.
- Jackson, H.R. and Gunnarson K. (1990). Reconstructions of the Arctic: Mesozoic to Present. Tectonophysics 172, 303-322.
- Jacob, K.-H. (1974). Deutung der Genese von Fluoritlagerstätten anhand ihrer Spurenelemente, insbesondere an fraktionierten seltenen Erden (Interpretation of the genesis of fluorine deposits

based on trace elements, with emphasis on fractionated rare earths), TU Berlin, 99 pp.

- Jacob, K.-H. (2010). Über Selbstorganisation und ihre Bedeutung für die Geologie. (About self-organization and its importance in geology). Zeitschrift für Geologische Wissenschaften (ZGW), Berlin, 38, 295-310, 6 plates.
- Jacob, K.-H., Dietrich, S., Krug, H.-J. (1994). Self-organization in mineral fabrics. In: Fractals and Dynamic Systems in Geosciences (Ed.: J.H. Kruhl), Springer, 259-268.
- Jacob, K.-H., Dietrich, S. (2012). Electric Field Forces and Self-Organization. From Common Concepts to New Insights. In: The Earth Expansion Evidence – A Challenge for Geology, Geophysics and Astronomy. Selected Contributions to the Interdisciplinary Workshop of the 37th International School of Geophysics EMFCSC, Erice (4-9 October, 2011) (Eds.: G. Scalera, E. Boschi, S. Cwojdzinski), 407-419.
- Jagoutz, O., Royden, L., Holt, A.F., Becker, T.W. (2015). Anomalously fast convergence of India and Eurasia by double subduction. Nature Geosciences Letters. 8, 475-478.
- Japsen, P. Bidstrup, T. Lidmar-Bergström, K. (2002). Neogene uplift and erosion of southern Scandinavia induced by the rise of the South Swedish Dome. In A.G. Doré, J.A. Cartwright, M.S. Stoker, J.P. Turner & N. White (eds.): Exhumation of the North Atlantic margin: timing, mechanisms and implications for petroleum exploration, 299– 314. Geological Society, London, Special Publication 162.
- Jardetzky, W.S. (1929). La rotation zonale de la planète et les dérives continentales. Acad. Roy. Serbe, Glas. Belgrade, 134, 150-157
- Jardetzky, W. (1954). The principal characteristics of the formation of the Earth's crust. Science, 119 (No. 3090), 361-365
- Jiang, S. He, M. Yue, W. Qi, B. & Liu, J. (2007). Observation of ³He and ³H in the volcanic crater lakes: possible evidence for natural nuclear fusion in deep Earth. In 8th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals, Sicily, Italy: Citeseer.
- Ji'an S. Mingguo Z. Lüqiao Z. Daming L. (2004). Identification of Five Stages of Dike Swarms in the Shanxi-Hebei-Inner Mongolia Border Area and Its Tectonic Implications. Acta Geologica Sinica – English Edition, 78, 320-330.

Johnson, A. (2019). The Earth... but not as We Know It.

- Johnson, B.D. Powell, C. McA. and Veevers. J.J. (1980). Early spreading history of the Indian Ocean between India and Australia. Earth and Planetary Science Letters . 47, 131-143.
- Johnson, M.R.W. (2002). Shortening budgets and the role of continental subduction during the India-Asia collision. Earth Science Review. 59, 101-123.
- Jones, S. & Ellsworth, J. (2003). Geo-fusion and cold nucleosynthesis in tenth international conference on cold fusion. Cambridge, MA: LENR-CANR. org.
- Jordan, P. (1966). Die Expansion der Erde. Vieweg, Braunschweig, 182p.
- Jordan, P. (1973). The expanding earth. The Physicist's Conception of Nature.
- Kahle, C.F. (1974). Plate Tectonics—Assessments and Reassessments. American Association of Petroleum Geologists. SBN-10: 0891812997. ISBN (electronic): 9781629812182.
- Karna Lidmar-Bergström, Mats Olvmo & Johan M. Bonow (2017). The South Swedish Dome: a key structure for identification of peneplains and conclusions on Phanerozoic tectonics of an ancient shield, GFF, DOI: 10.1080/11035897.2017.1364293.
- Kasting, J. F. & Howard, M. T. (2006). Atmospheric composition and climate on the early earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1474), 1733–1742.
- Ketner, K.B. (2012). An alternative hypothesis for the mid- Paleozoic Antler orogeny in Nevada. USGS, Prof. Paper 1790, 11p.
- Khan, Z.A. and Tewari, R.C. (2016). The concept of Gondwanaland and Pangaea- A appraisal: Journal of Applied Geology and Geophysics, v.4, p.44-56. doi: 10.9790/0990-0403024456.
- Khan, Z.A. and Tewari, R.C. (2017). Problems in accepting Plate Tectonics and subduction as a mechanism of Himalayan evolution. Jour. Applied Geology and Geophysics. 5, 81-100.
- Khan, Z.A. and Tewari, R.C. (2018). Indus-Yarlung Tsangpo Suture zone concept- A second opinion. Jour. Tethys, 5, 218-239.
- Kiessling, W. Flügel, E. Golonka, J. (1999). Paleoreef maps: Evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bulletin, 83/10, 1552-1587.
- King, L.C. (1983). Wandering Continents and Spreading Sea Floors on an Expanding Earth. Wiley, Chichester, pp. 232.

- Keindl, J. (1940) Dehnt sich die Erde aus? Eine geologische Studie. (Is the Earth expanding? A geological study.), Herold-Verlag Dr. Franz Wetzel & Co., Munchen-Sollin, pp.50.
- Klootwijk, C.T. (1986). Greater India's margin: Paleomagnetic evidence for large-scale continental subduction, In: K.G. McKenzie (Ed).Shallow Tethys 2. A. A. Balkema, Rotterdam, 529.
- Kokus, M. (2004). Alternate theory of gravity and geology in seismic prediction. In New Concepts in Global Tectonics; Urbino Workshop 29-31 Aug. Italy.
- Kort, L. (1949). Das Wachen der Earth und die Wanderung der Kontinente. Buchdruckerei, Hannover, pp. 53.
- Koziar, J. (1980). Ekspansja den oceanicznych I jej zwiazek z hipotaza ekspansji Ziemi. Sprawozdania Wroclawskiego Towarzystwa Naukowego, 35, 13-19. [Expansion of the ocean floors and its connection with the hypothesis of the expanding Earth. Reports of the Wroclaw Scientific Society, vol. 35B. Ossolineum, Wroclaw, pp. 13– 19.]
- Koziar, J. (1985). Rozwój oceanów jako przejaw ekspansji Ziemi.
 Geologia nr 8. Uniwersytet Slaski, Katowice, s. 109–114.
 [Development of the oceans as a manifestation of Earth's expansion.
 Geology no. 8. The Silesian University, Katowice, pp. 109–114.]
- Koziar, J. (1991). Prace nad problemami ekspansji Ziemi w oœrodku wroclawskim. Acta Universitatis Wratislaviensis, nr 1375, s. 110–156.
 [Research on the Expanding Earth in the Wrocław scientific community. Acta Universitatis Wratislaviensis, no. 1375, pp. 110–156.]
- Koziar, J. (1991). Nowa rekonstrukcja Gondwany na ekspanduj¹cej Ziemi, na tle rekonstrukcji dotychczasowych. Acta Universitatis Wratislaviensis, nr 1375, s. 357–396. [A new reconstruction of Gondwana on the expanding Earth. Acta Universitatis Wratislaviensis, no. 1375, pp. 357–396.]
- Koziar, J. (1993). Rozwój Pacyfiku i jego znaczenie dla współczesnej geotektoniki. W: J. Skoczylas (red.), Streszczenia referatów, tom II. Polskie Towarzystwo Geologiczne Oddział w Poznaniu i Instytut Geologii Uniwersytetu im. Adama Mickiewicza w Poznaniu, Poznañ, s. 45–56. [Development of the Pacific and its significance to the contemporary geotectonics. (The expanding Pacific). In: J. Skoczylas (ed). Lecture summaries. vol. II. The Polish Geological Society Poznañ Branch and the Institute of Geology of the Adam Mickiewicz University in Poznañ, Poznañ, pp. 45–56.]

- Koziar, J. (1994). Principles of plate movements on the expanding Earth. In: Frontiers of Fundamental Physics. Eds. M.Barone & F.Selleri. Plenum Press. New York & London: 301 - 307.
- Koziar, J. (2003). Tensional development of active continental margins.
 In: K. H. Jacob (ed.), Materials of the International Conference "Erdexpansion – eine Theorie auf dem Prüfstand" (24–25 May, 2003, Ostbayern Schloss Theuern (Germany). Technische Universität, Berlin, pp. 27–35.
- Koziar, J. (2005). Tensyjny rozwój orogenów sródladowych. Czêsc I, Mechanizm. W: J. Skoczylas (red.), Streszczenia referatów, tom XIV. Polskie Towarzystwo Geologiczne – Oddział w Poznaniu i Instytut Geologii Uniwersytetuim. Adama Mickiewicza w Poznaniu, Poznañ, s. 131–156. [Tensional development of intracontinental fold belts. Part I, Mechanism. In: J. Skoczylas (ed.), Lecture summaries, vol. XIV. The Polish Geological Society – Poznañ Branch and the Institute of Geology of the Adam Mickiewicz University in Poznañ, Poznañ, pp. 131–156.]
- Koziar, J. (2005). Tensyjny rozwój orogenów œródladowych. Czêsc II, Przykłady regionalne. W: J. Skoczylas (red.), Streszczenia referatów, tom XIV. Polskie Towarzystwo Geologiczne – Oddział w Poznaniu i Instytut Geologii Uniwersytetu im. Adama Mickiewicza w Poznaniu, Poznañ, s. 157–196. [Tensional development of intracontinental fold belts. Part II, Global examples. In: J. Skoczylas (ed.), Lecture summaries, vol. XIV. The Polish Geological Society – Poznañ Branch and the Institute of Geology of the Adam Mickiewicz University in Poznañ, Poznañ, pp. 157–196.]
- Koziar, J. (2006). Terrany, czyli geologia w krainie duchów. W: J. Skoczylas (red.), Streszczenia referatów, tom XV. Polskie Towarzystwo Geologiczne – Oddział w Poznaniu i Instytut Geologii Uniwersytetu im. Adama Mickiewicza w Poznaniu, Poznañ, s. 47–98. [Terranes: or geology in a phantoms world. In: J. Skoczylas (ed.), Lecture summaries, vol. XV. The Polish Geological Society – Poznañ Branch and the Institute of Geology of the Adam Mickiewicz University in Poznañ, Poznañ, pp. 47–98.]
- Koziar, J. (2007). Tensional origin of the inversion in the Polish Basin with reference to tensional development of the Bohemian Massif. Extended abstract. In: B. Kontny, V. Schenk (eds.), Abstracts of the 8th Czech Polish Workshop "On Recent Geodynamics of the Sudety Mts. and Adjacent Areas" (Kłodzko, Poland, 29–31 March, 2007). Wrocław University of Environmental and Life Sciences, Wrocław, pp. 17–21.

- Koziar, J. (2011). Shortening of the Length of Day (LOD) Caused by Big Tsunami Earthquakes on the Expanding Earth (extended abstract).
 In: S. Cwojdziňski, G. Scalera (eds.), Pre-Conference Extended Abstracts Book of the 37th Course of the International School of Geophysics. Interdisciplinary Workshop on "The Earth Expansion Evidence: A challenge for Geology, Geophysics and Astronomy." (Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily, 4–9 October, 2011). Istituto Nazionale di Geofisica e Vulcanologia, Rome, pp. 55–58.
- Koziar, J. (2012). Expanding Earth and Space Geodesy. Society of Geologist Alumni of Wroclaw University. Wroclaw 2018.
- Koziar, J. (2018). Falsification of the Eulerian motions of lithospheric plates. Circularity of the plate tectonics theory. LAP LAMBERT Academic Publishing.
- Koziar, J. (2018). Geological proofs of significant expansion of the Earth and its broader scientific context. Association of Geologist Alumni of Wroclaw University, Wroclaw, PL. ISBN 978-83-950414-1-9.
- Koziar, J., Jamrozik, L. (1985). Application of the tension-gravitational model of the tectogenesis to the Carpathian orogen reconstruction.
 In: Proceeding reports of the XIIIth Congress of the Carpatho Balkan Geological Association (Cracow, Poland, 5–10 September, 1985), part I. Polish Geological Institute, Cracow, pp. 200
- Koziar, J., Jamrozik, L. (1994). Tension–gravitational model of island arcs. In: F. Selleri, M. Barone (eds.), Proceedings of the International Conference "Frontiers of Fundamental Physics" (Olympia, Greece, 27–30 September, 1993). Plenum Press, New York and London, pp. 335–337.
- Koziar, J., Muszyński, A. (1980). Spostavki meždu ekstenzjonnoto rozvitije na Srediziemno i Èerno morje. Spisanje na Blgarskoto Geologièesko Družestva, god. XLI, kn. 3, s. 247–259. [Correlations of extensional development of the Mediterranean and the Black Sea. Review of the Bulgarian Geological Society, vol. 41, no. 3, pp. 247– 259.]
- Krause, D.W. and 4 others. (1997). Cosmopolitanism among Gondwanian Late Cretaceous mammals. Nature, 390, 178-208.
- Krouss, L. (2014). A Beacon from the Big Bang. Scientific American 4, 311.59-67.
- Krug, H.-J., Dietrich, S., Jacob, K.-H. (1994). The formation and fragmentation of periodic bands through precipitation and Ostwald ripening. In: Fractals and Dynamic Systems in Geosciences (Ed.: J.H. Kruhl), Springer, 269-289.

- Kuhn, T. (1970). The structure of scientific revolutions. University of Chicago press, 2nd ed edition.
- Kundt, W. (1998). The Gold effect: Odyssey of scientific research. arXiv:astro-ph/9810059v1, 54 S.
- Larson R.L. Pitman W.C. (III), Golovchenko X. Cande S.C. Dewey J.F. Haxby W.F. & LaBrecque (mapcompilers) (1985). The Bedrock Geology of the World. Freeman & Co. New York.
- Lay, T. Hernlund, J. Buffett, A.B. (2008). Core–mantle boundary heat flow. In Nature Geoscience, No. 1, p. 25-32.
- Laya-Pereira, J.C. (2012). Permian carbonates in the Venezuelan Andes. Doctoral Thesis, Durham Univ. 330p.
- Leclerc, G-L. (1751). Theory of the Earth.
- Le Grand, H.E. (1988). Drifting Continents and Shifting Theories. Cambridge University Press.
- Le Pichon, X. (1968). See-floor spreading and continental drift. J.Geophys.Res. 73, 12:3661 3697.
- Le Pichon, X. (2001). My Conversion to Plate Tectonics. In Oreskes, N. (editor), Le Grand, H.E. (2001). Plate tectonics: An insider's history of the modern theory of the Earth. Westview Press.
- Lerner, E. (1992). The Big Bang never happened. Vintage Books, New York.
- Lewis, C. (2000). The Dating Game: One Man's Search for the Age of the Earth, Cambridge University Press, ISBN 0-521-89312-7
- Leyton, M. Monroe, J. (2017). The Source for Up to Half of Earth's Internal Heat Is Unknown. Web: https://www.realclearscience.com/articles/2017/08/05/the_source_for_u p_to_half_of_earths_internal_heat_is_unknown.html
- Liang Rixuan, Bai Wanji. (1984). Genesis of ultramafic rocks in Yarlu-Zhangbo ophiolite belt. International Symposium Geology Himalaya, 1, 117-118 (Abstract).
- Lindemann, B. (1927). Kettengebirge, Kontinentale Zerspaltung und Erdexpansion. Gustav Fischer Publishers, Jena. 186p.
- Love, J.J. Thomas, J.N. (2013). Insignificant solar-terrestrial triggering of earthquakes. Geophysical Research Letters. Vol.40, is. 6:1165-1170.
- Lovelock, J.E. (1979). Gaia: A new look at life on Earth. Oxford University Press, Oxford, 176 pp.
- Low, F. S. Kristna, S. (1970). Narrow bond infrared photometry of alfatory. Nature: 3. 23. 13-22.

- Lyell, C. (1830). Principles of Geology: being an attempt to explain the former changes of the Earth's surface, by reference to causes now in operation. Part I.
- Managadze, G.G., Cherepin, V.T., Shkuratovm Y.G., Kolesnik, V.N., Chumikov, A.E. (2011). Simulating OH/H2O formation by solar wind at the lunar surface, Icarus 215, 449–451.
- Mardfar See Amirmardfar.

Makarenko G.F. (1983). Volcanic Seas on Earth and Moon. (In Russian), (Moscow, Izdatel's tvo Nedra.

- Marvin, D. (2018). The Expanding Earth and the Implications on the Geophysics of Earth. 44p.
- Marvin, J.H. (2003). The Nuclear Heart of the Earth. Interview at: http://www.spacedaily.com/news/earth-03k.html.
- Marvin, J.H. (2014). Herdon's Earth and the Dark Side of Science; Perface at: http://nuclearplanet.com/Herdon's_Earth%20.html.
- Molnar, P. Tapponnier, P. (1975). Cenozoic tectonics of Asia: effects of a continental collision: Science, 189, 419-426.
- Manuel K. Oliver (2009). Earth's Heat Source, the Sun. At: Energy & Environment 20131-144. https://arxiv.org/ftp/arxiv/papers/0905/0905.0704.pdf.
- Mareschal, J-C. et al. (2012). Geoneutrinos and the energy budget of the Earth. Journal of Geodynamics, Vol. 54, p. 43– 54.
- Maxlow, J. (1995). Global Expansion Tectonics: The geological implications of an expanding Earth. Unpublished Master of Science thesis, Curtin University of Technology, Perth, Western Australia.
- Maxlow, J. (2001). Quantification of an Archaean to Recent Earth Expansion Process Using Global Geological and Geophysical Data Sets. PhD thesis, Curtin University of Technology, Western Australia.
- Maxlow, J. (2002). Quantification of an Archaean to recent Earth Expansion Process using Global Geological and Geophysical Data Sets. Unpublished PhD thesis, Curtin University of Technology, Perth, Western Australia.
- Maxlow, J. (2003). Quantification of an Archaean to Recent Earth expansion process. In Scalera, G and Jacob, K-H. (Editors) 2003. Why Expanding Earth? A book in honour of Ott. Christoph Hilgenberg. INGV publisher Roma. 335-349.
- Maxlow, J. (2005). Terra non firma Earth: Plate Tectonics is a myth. Terrella Press.

- Maxlow, J. (2014). On the Origin of Continents and Oceans: A Paradigm Shift in Understanding. Perth, Western Australia: Terrella Press.
- Maxlow, J. (2015). Expansion Tectonics: A Complimentary Download. Terrella Press, 114p.
- Maxlow, J. (2018). Beyond Plate Tectonics: Unsettling settled science. Aracne Editrice, Roma. www.aracneeditrice.it
- McCarthy, D. (2003). The trans-pacific zipper effect: disjunct sister taxa and matching geological outlines that link the pacific margins. Journal of Biogeography, 30(10), 1545–1561. https://doi.org/10.1046/j.1365-2699.2003.00929.x
- McCarthy, D. (2011). Here be dragons: how the study of animal and plant distributions revolutionized our views of life and Earth. OUP Oxford.
- McElhinny M.W. Lock J. (1996). IAGA paleomagnetic databases with Access. Surveys in Geophysics, 17, 575-591.
- McKenzie, D.P. (1977). Plate Tectonics and Its Relationship to the Evolution of Ideas in the Geological Sciences, Daedalus Vol. 106 No. 3, 97-124.
- Menard, H.W. (1986). The Ocean of Truth: A Personal History of Global Tectonics. Princeton University Press.
- Meservey, R. (1969). Topological inconsistency of continental drift in the present-sized earth. Science.
- Meyerhoff, A.A., Tanner, I., Morris A.E.L., Martin, B.D., Agocs, W.B., Meyerhoff, H.A. (1992). Surge tectonics: a new hypothesis of Earth dynamics. In: Chatterjee, S. and Hotton, N. (eds.): New Concepts in Global Tectonics. Texas Tech. University Press, Lubbock, 309-409.
- Meyerhoff, A.A. (1995). Surge-tectonic evolution of southeastern Asia: A geohydro-dynamics approach. Jour. Southeast Asian Earth Sciences, 12, 143-247.
- Meyerhoff, A.A., Boucot, A.J., Meyerhoff, H.D., Dickins, J.M. (1996). Phanerozoic faunal and floral realms of the Earth: The intercalary relations of the Malvinokaffric and Gondwana faunal realm with the Tethyan faunal realm. Mem Geological Society of America No. 189.
- Miller, E.L. Kuznetsov, N. Soboleva, A. Udoratina, O. Grove, M.J. Gehrels, G. (2011). Baltica in the Cordillera? Geology, 39/8, 791-794. Doi: 10.1130/G31910.1.
- Mizuno, T. (1998). Nuclear transmutation: the reality of cold fusion. Infinite Energy Press Concord.

- Molnar, P. (2007). An examination of evidence used to infer late Cenozoic "Uplift" of mountain belts and other high terrain: What scientific question does such evidence pose? Journal of the Geological Society of India. 70, 395-410.
- Moores, E.M. (1991). Southwest U.S.—East Antarctic (SWEAT) connection: A hypothesis. Geology 19, 425-428.
- Moores, E.M. Kellogg, L.H. and Dilek, Y. (2000). Tethyan Ophiolites, mantle convection and tectonic historical contingency: A resolution of the ophiolite conundrum. GSA. Inc. Special Paper #349 in Ophiolites and Oceanic Crust: New Insight from the Field Studies and the Drilling Program, 349, 3-12.
- Myers, L.S. (2004). Earth expanding rapidly by external accretion expansion. In Urbino Workshop 29-31 August.
- Myers, L.S. (2008). A growing and expanding Earth is no longer questionable. (Washington, D.C.: American Geophysical Union, Spring Meeting, 26a. Myers).
- Myers, L.S. (2015). Gravity: The Source of Earth's Water. Page Publishing Inc. ISBN-13: 978-1682137116.
- Najman, Y. and 9 others. (2010). Timing of India-Asia collision: geological, biostratigraphic and paleomagnetic constraints. Jour. Geophy. Research, 115, 1978-2012.
- Neuendorf, K.K.E., Mehl Jr, J.P., Jackson, J.A. (Editors) (2011). Glossary of Geology (Fifth Edition), Revised, American Geosciences Institute, Alexandria, Virginia.
- Neiman, V.B., 1962: Razsirjajuscajasja Zemlja (The expanding Earth). Gosudarstvennoje Izdatelstwo Geograficeskoj Literatury, Moskwa.
- Nicolas, A. Bouchez, J.L. Blaise, J. Poirier, J.P. (1977). Geological aspects of deformation in continental shear zones. Tectonophys. 42, 55-73.
- Nicolas, A. Poirier, J. P. (1976): Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. J. Wiley & Sons, London, 444p.
- Nicolis, G., Prigogine, I. (1987). Die Erforschung des Komplexen. Piper, München, Zürich, 384 pp.
- Noel, D. (1986). Nut tree distributions and the expansion of the Earth. http:// wayback.archiveit.org/1941/20100524190351/http://www.wanatca.org.au/Q-Yearbook/Y11all.pdf
- Noel, D. (1989). Nuteeriat: nut trees, the expanding Earth, Rottnest Island, and all that–. Published for the Planetary Development Group, Tree Crops Centre by Cornucopia Press. Reprint available from

Amazon, https://www.amazon.com/Nuteeriat-Expanding-Rottnest-Island-P-Book/dp/1982976624/

- Noel, D. (2012). Inside The Earth -- The Heartfire Model. http://www.aoi.com.au/bcw/Heartfire/index.htm
- Noel, D. (2013). Inside the Earth -- The Heartfire Model. http://www.aoi.com.au/bcw/Heartfire/index.htm
- Noel, D. (2017a). EP302: The Earth-Expansion Model Part A --The Death of Plate Tectonics. http://www.aoi.com.au/EP/EP302.htm. [A revision of "Fixed-Earth and Expanding-Earth Theories -- Time for a Paradigm Shift?"

<http://www.aoi.com.au/bcw/FixedorExpandingEarth.htm> 2004.]

Noel, D. (2017b). EP303: The Earth-Expansion Model Part B -- Answers to A Hundred Puzzles. http://www.aoi.com.au/EP/EP303.htm [A revision of "Fixed-Earth and Expanding-Earth Theories -- Time for a Paradigm Shift?"

<http://www.aoi.com.au/bcw/FixedorExpandingEarth.htm> 2004.]

- Noel, D. (2017c). XT807: The Concore Model of planet and star interiors. http://www.aoi.com.au/Extracts/XT807.htm [An extract from Inside "The Earth -- The Heartfire Model". ref. 9, 2012]
- Norin, E. (1946). Geological expedition in Western Tibet: Report Sino-Swedish Expedition, Stockholm, 1-229.
- Nutman, A.P. Clark R.L. Friend C.R.L. Bennett V.C. McGregor V.C. (2004). Dating of the Ameralik dyke swarms of the Nuuk district, southern West Greenland: mafic intrusion events starting from c. 3510 Ma. Journal of the Geological Society, 161, 421-430; DOI: 10.1144/0016-764903-043.
- Ogrisseg, J. (2009). Dogmas may blinker mainstream scientific thinking. https://www.japantimes.co.jp/life/2009/11/22/life/dogmas-may-blinkermainstream-scientific-thinking/
- Ollier, C.D. (1969). 'Weathering', Oliver & Boyd, Edinburgh, 304.
- Ollier, C.D. (1981). Tectonics and Landforms, Longman, Harlow, 324.
- Ollier, C.D. (2002). The structure and origin of mountains: Preplanation and post-planation gravity structures. in Dramis F. Farabollini P. Molin P. (Eds.) Large-scale vertical movements and related gravitational processes. In: Proc. International Workshop, Camerino-Roma 21-26 June 1999, Studi Geologici Camerti, Numero Speciale; pp.147- \155, Edimond,
- Ollier, C.D. (2003). The origin of mountains on an expanding Earth, and other hypotheses. In Scalera,G. & Jaob, H. (eds) Why Expanding Earth. 129 160. INGV Publisher, Rome.

- Ollier, C.D. (2004). The evolution of mountains on passive continental margins. 59 88 In: Slaymaker, O. and Owens, P. (eds.): Mountain Geomorphology. Edward Arnold, London, Città di Castello (Italy).
- Ollier, C.D. (2006). A plate tectonics failure: the geological cycle and conservation of continents and oceans. Annals of Geophysics, Supplement to Vol. 49, N. 1, Chapter 8, 427-436.
- Ollier, C.D. (2007). Exceptional planets and moons, and theories of the expanding Earth. New Concepts in Global Tectonics, 45, 52-54.
- Ollier, C.D. (2012a). Dykes, crustal extension and global tectonics. In Scalera, G. Boschi, E. and Cwojdzinski (eds.) The Earth Expansion Evidence – a challenge for Geology, Geophysics and Astronomy. Selected Contributions to the Interdisciplinary Workshop of the 37th International School of Geophysics EMFCSC, Erice (4-9 October 2011), 207 – 304.
- Ollier, C.D. (2012b). Extension everywhere: rifts, continental margins and island arcs. In Scalera, G. Boschi, E. and Cwojdzinski (eds.) In The Earth Expansion Evidence–a challenge for Geology, Geophysics and Astronomy. Selected Contributions to the Interdisciplinary Workshop of the 37th International School of Geophysics EMFCSC, Erice (4-9 October 2011), 61 – 76.
- Ollier, C.D., Koziar, J. (2007). Dlaczego cykle geologiczne tektoniki p³yt nie sprawdzaj¹ siê? Przegl¹d Geologiczny, tom 55, nr 5, s. 375–382. [Why the plate tectonics rock cycles do not work? Geological Review, vol. 55, no. 5, pp. 375–382.]
- Ollier, C.D. Pain, C.F. (2000). The Origin of Mountains, Routledge, London.
- Ollier, C.D. Pain C.F. (2019). Neotectonic mountain uplift and geomorphology. Geomorfologiya. 2019;(4):3-26. https://doi.org/10.31857/S0435-4281201943-26.
- Öpik, E. (1971). Cratering and the moon's surface. In Advances in Astronomy and Astrophysics. Elsevier, vol. 8, pp. 107–337.
- Oreskes, N. (1989). The Rejection of Continental Drift: Theory and Method in American Earth Science.
- Oreskes, N. (editor), Le Grand, H.E. (2002). Plate tectonics: An insider's history of the modern theory of the Earth. Westview Press.
- Orlando, T.M., Jones, B.M., Aleksandrov, A.B., Hibbits, C.A., Dyar, M.D. (2018). A Solar Wind Source of Water in the Polar Regions of the Moon? Lunar Polar Volatiles 2018 (LPI Contrib. No. 2087).
- Orlenok, V. (2010). Global volcanism and oceanization of the Earth and planets. Kaliningrad: I.Kant State University of Russia Press, 167.

- Ortoleva, P. (1984). Geochemical Self-Organization. Oxford Monogr.Geol. Geophys., 23, 411 pp.
- Owen, H.G. (1976). Continental displacement and expansion of the Earth during the Mesozoic and Cenozoic. Philosophical Transactions of the Royal Society of London. A 281, 223-291.
- Owen, H.G. (1983). Atlas of continental displacement 200 million years to the Present. Cambridge Earth Sciences Series. Cambridge University Press. i-x, 1-159, 76 maps.
- Owen, H.G. (1984). The Earth Is Expanding and We Don't Know Why. In New Scientist, No. 22, Nov. 22, 1984. 27-
- Owen, H.G. (1996). Boreal and Tethyan late Aptian to late Albian ammonite zonation and Palaeobiogeography. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg. 77, 461-481.
- Owen, H.G. (2012). Earth expansion Some Mistakes, What Happened in the Palaeozoic and the Way Ahead. In Scalera G. Boschi, E. and Cwojdzinski, S Editors. The Earth Expansion Evidence – A challenge for Geology, Geophysics and Astronomy Erice, Sicily, 4-9 October 2012, 77-89.
- Owen, L.A. (2004). Cenozoic evolution of global mountain systems. 132
 152 In: Slaymaker, O. and Owens, P. (eds.): Mountain Geomorphology. Edward Arnold, London.
- Patriat, F., Achache, J. (1984). The Indian-Eurasian collision. A synthesis of oceanic magnetic anomalies and the comparison with continental paleomagnetic studies. International Symposium Geology Himalayas, 2, 14 (abstract).
- Peale, J.S. (1999). Origin and Evolution of the Natural Satelits. Annu. Rev. Astron. Astrophys. 37:533–602.
- Peishing, Bao and Wang Xibin. (1984). The two suites of volcanic in the Yarlung-Zhangbo River ophiolite belt - a discussion on the emplacement mechanism of ophiolites. International Symposium Geology Himalaya 1, 103-105 (Abstract).
- Pfeufer, J. (1981). Die Gebirgsbildungsprozesse als Folge der Expansion der Erde. Glückauf, Essen, 125 pp.
- Pisarevsky, S. (2005). Global Paleomagnetic Database (GPMDB V 4.6). Tectonics Special Research Centre of the University of Western Australia Web site (http://www.tsrc.uwa.edu.au/).
- Pitcher, W.S. Atherton, M.P. Cobbing, E.J. Beckinsale, R.D. (1985). Magmatism at a Plate Edge. Blackie, Halstead Press, Glasgow, 328p.
- Playfair, J. (1802). Illustrations of the Huttonian Theory of the Earth.

- Poirier, J.P. (1976). Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. J. Wiley & Sons, London, 444p.
- Popper, K. (1963). Science as falsification. In The Growth of Scientific Knowledge (pp. 33–39). London: Routledge.
- Prasad, G. R. Verma, O. Flynn, J.J. and Goswami, A. (2013). A late Cretaceous vertebrate fauna from the Cauvery basin, South India: Implications for Gondwanian paleogeography. Jour. Vertebrate Paleontology, 33, 1260-1268.
- Pratt, D. (2000). Plate Tectonics: A paradigm under threat. Jour. Scientific Exploration. 14, 307-352.
- Priestley, J. (1767). The History and Present State of Electricity. London.
- Puchkov, V.N. (2009). The evolution of the Uralian orogen. (London: Geological Society, Special publication, V. 327, 2009), 161-195. DOI: 10.1144/SP327.9.
- Rage, J.C. (2003). Relationships of the Malagasy fauna during the Late Cretaceous: Northern of southern routes? ActaPaleontologicaPolonica, 48, 661-662.
- Rage, J.C. (2016). Gondwana, Tethys and terrestrial vertebrates during Mesozoic and Cenozoic. In: Gondwana and Tethys. M.G. Audrey-Charles and A. Hallam (Eds.).Geological Society of America Special publication 37, 255-273.
- Raiverman, V. (1992). Trans-Asiatic lineaments and Himalayan orogeny, In: A. K. Sinha (Ed). Himalayan Orogen and global tectonics: Oxford & IBH. Publication, New Delhi, 121-156.
- Raiverman, V. (2002). Foreland sedimentation in Himalayan tectonic regime: A relook at the Orogenic process: B.S. M. P.S. Publ, New Delhi, 1- 378.
- Rattclife, H. (2017). A review of Anomalous Redshif Data. In: The Galileo of Polmar. Essay in memory of Alton Arp edited by Christofer C. Fulton and Martin Cocus.
- Reading, H.G. (1980). Characteristics and recognition of strike-slip fault systems. In: Sedimentation in Oblique-Slip Mobile Zones (Eds. P.F. Balance, H.G. Reading), Internat. Assoc. Sedimentol. Spec. Publ. 4, 7-26.
- Reich, W. (1945/1982). The Bioelectrical Investigation of Sexuality and Anxiety. Farrar, Straus and Giroux, New York, xi + 161 pp.
- Reich, W. (1949/1951/1973). Ether, God and Devil/Cosmic Superimposition. Farrar, Straus and Giroux, New York, 308 pp.

- Reston, T. (2007). Extension discrepancy at North Atlantic nonvolcanic rifted margins: Depth-dependent stretching or unrecognized faulting? Geology 35, 367-370.
- Rickard, M.J. (1969) Relief of curvature on expansion a possible mechanism of geosynclinal formation and orogenesis. Tectonophysics 8(2): 129 144.
- Reitan, P.H. (1968a). Frictional heat during metamorphism: quantitative evaluation of concentration of heat generation in time. Lithos, 1, 151-163.
- Reitan, P.H. (1968b). Frictional heat during metamorphism: quantitative evaluation of concentration of heat generation in space. Lithos, 1, 268-274.
- Reitan, P.H. (1988). Global dynamics and the temperatures of metamorphism. Bull. Geol. Inst. Univ. Uppsala, N.S. 14, 21-24.
- Rogers, (1985). Quote given in Carey (1988).
- Romanowicz, B., Gung, Y. (2002). Superplumes from the Core-Mantle Boundary to the Lithosphere: Implications for Heat Flux." Science 96.5567. (Stanford, CA: Highwire Press, 2002).513-516. DOI: 10.1126/science.1069404.
- Romans, B. (2008). Subduction Denialism, Part 1: The Backstory. https://clasticdetritus.com/2008/11/14/subduction-denialism-part-1-thebackstory/
- Roques, M. (1941). Les schistes cristallins de la partie sud-ouest du Massif Central Français. Mém. Serv. Carte géol. France, 512p.
- Rubin, V.C. (1988). Dark matter in the universe. Proceedings of the American Philosophical Society, vol. 132, no. 3, pp. 258–267.
- Runcorn, S.K. (Ed.). (1962). Continental drift. Elsevier.
- Runcorn, S.K. (Ed.). (1969). The Application of the Modern Physics to The Earth and Planetary Interiors. (N.A.T.O. Advanced Study Institute)
- Rust, J. and 15 Others. (2010). Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc. National Academy Science, 107, 18360-18365.
- Sarwar, G. and Khalil, Y.S. (2017). The saga of India's drift and suprasubduction origin of the ophiolites on its northwestern margin, Pakistan.New Concepts in Global Tectonics Journal. 5, 27-47.
- Scalera, G. (2003). Samuel Warren Carey. Commemorative memoir. In Scalera, G. and Jacob, K-H., (Editors) 2003. Why Expanding Earth? A book in honour of Ott Christoph Hilgenberg. Proceedings of the 3rd Lautenthaler Montanistisches Colloquium, Mining Industry Museum,

Lautenthal (Germany) May 26, 2001 (INGV Publication, Rome), 85-95.

- Scalera G. (2003). The expanding Earth: a sound idea for the new millennium. In: G. Scalera and K.-H. Jacob (eds.): Why Expanding Earth? – A book in Honour of Ott Christoph Hilgenberg. Proceedings of the 3rd Lautenthaler Montanistisches Colloquium, Mining Industry Museum, Lautenthal (Germany) May 26, 2001 (INGV Publication, Rome), 181-232.
- Scalera, G. (2003). Bibliographical sources for the expanding Earth. In: G. Scalera and K.-H. Jacob (eds.): Why Expanding Earth? – A book in Honour of Ott Christoph Hilgenberg. Proceedings of the 3rd Lautenthaler Montanistisches Colloquium, Mining Industry Museum, Lautenthal (Germany) May 26, 2001 (INGV Publication, Rome).
- Scalera, G. (2006). The Mediterranean as a slowly nascent ocean. Annals of Geophysics, Supplement to V. 49, No. 1, 451-482.
- Scalera, G. (2008). Great and old earthquakes against great and old paradigms – paradoxes, historical roots, alternative answers. Advances in Geosciences, 14, 41–57.
- Scalera, G. (2009). Mantovani and his ideas on the expanding Earth, as revealed by his correspondence and manuscripts. Annals of Geophysics, 52(6), 615-648.
- Scalera, G. (2011). South American volcanoes and great earthquakes. Article Cwojdziński. Rome, (2012), 492.
- Scalera, G. (2011). The Earth Expansion Evidence, A challenge for geology, geophysics and astronomy. Contribution to the Interdisciplinary Workshop, held in Erice, Sicily, Italy (4-9 October 2011). Post-conference publication edited by Giancarlo Scalera (editor in chief), EnzoBoschi, and Stefan Cwojdziński. Rome (2012), 492.
- Scalera, G. (2013). The vague volcano-seismic clock of the South American Pacific margin. Advances in Geosciences, 35, 89–103.
- Scalera G., Braun, T. (2003). Ott. Christoph Hilgenberg in twentieth century Geophysics. In Scalera, G and Jacob, K-H., (Editors) 2003.Why Expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV publisher Roma. 25-41.
- Scalera, G., Jacob, K-H., (Editors) (2003). Why Expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV publisher Rome. 465 pp with extensive bibliography.
- Scalera, G. (editor in chief): Hilgenberg, O. C. (2003/1933/1939)Formation and development of the: contraction or expansion. InGiancarlo Scalera, and Karl-Heinz Jacob (eds): Why Expanding Earth?

Proceedings of the Lautenthal Colloquium, held on May 26, 2001 Honour off OttChistoph Hilgenberg. INGV, Rome 2003.

- Scalera, G., Boschi, E. and Cwojdzinski (Editors) (2012). The Earth Expansion Evidence – A challenge for Geology, Geophysics and Astronomy. Selected Contributions to the Interdisciplinary Workshop of the 37th International School of Geophysics EMFCSC, Erice (4-9 October 2011), Aracne Editrice, Rome, 494pp.
- Schaer, J.P. and Rogers, J. (1987). The Anatomy of Mountain Ranges. Princeton University Press, Princeton, N.J. pp.298.
- Sharaf, M. (1983). Fury on Earth, A Biography of Wilhelm Reich. St. Martin's Press, New York, xiii + 550 pp.
- Schirber, M. (2005). Core of a Supernova Goes Missing. At: http://www.space.com/1168-core-supernova-missing.html.
- Scholz, C.H. (1980). Shear heating and the state of stress on faults. J.Geophys. Res. 85 (No. B11), 6174-6184
- Scholz, C.H. Beavan, J. Hanks, T.C. (1979). Frictional metamorphism, argon depletion, and tectonic stress on the Alpine Fault, New Zealand. J. Geophys. Res. 84 (No. B12), 6770-6782
- Schwinner, R.G. (1924). Scherung, der Zentralbegriff der Tektonik. Cbl. Miner. Geol. Paläont. 469-479
- Sciama, W. D. (2012/1959) The unity of the Universe. Courier Corporation ISBN 0486135896 p. 256.
- Scoppola, B. Boccaletti, D. Bevis, M. Carminati, E. Doglioni, C. (2006). The westward drift of the lithosphere: A rotational drag? Geol. Soc. Am. Bull. 118/1-2, 199-209. Doi: 10.1130/B25734.1.
- Scotese, C.R. (1994). Paleogeographic maps. In: Klein, G. D. ed. Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geological Society of America Special Paper, 288.
- Scotese, C.R. (2014). Atlas of Permo-Carboniferous Paleogeographic Maps (Mollweide Projection), Maps 53-64, Vol. 4, The Late Paleozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL.
- Seclaman, M. (1982). Semnificatia genetica a liniatiilor minerale in sisturile cristaline din Carpatii Meridionali. St. Cerc. Geol. Geofiz. Geogr.Ser. Geol. 27,8-17.
- Seebeck, T.J. (1826). Über die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Ann. Phys., 82/3, 253-286.
- Shannon, M. C. & Agee, C. B. (1998). Percolation of core melts at lower mantle conditions. Science 280, 1059 1061.

- Shehu, V. (1971). The age and origin of the porphyry granite of Fierza. (In Albanian).Bul.Of Sc. Tirana Unv.No 1 p 127 141.
- Shehu, V. (1988). Developing Earth. (In Albanian). Tirana, Albania. Sht. Bot. 8 Nëntori, 180.
- Shehu, V. (2004). The Earth, a sample of universe in our hands, according to the Earth expansion through growing and developing processes. New Concepts in Global Tectonics. Urbino Italy: Workshop, Aug. 29- 31.
- Shehu, V. (2005). The Growing and Developing Earth. No. Charleston, S.C.: BookSuege, LLC (2005), ISBN 1-4196-1963-3, USA, 218.
- Shehu, V. (2009). The Growing and Developing Earth. (In Albanian). Tiranë, Albania: Sht. Bot. Dudaj. 361.
- Shehu, V. (2012/2011). Earth Expansion through Activity of the Earth Core-Kernel as an active cosmic Object. In: The Earth Expansion Evidence, A challenge for geology, geophysics and astronomy. Selected Contributions to the Interdisciplinary Workshop, (held in Erice, Sicily, Italy 4-9 October. 2011). 243-262. Post-conference publication edited by GiacarloScalera (editor in chief), EnzoBoschi, and Stefan Cwojdziñski. 263-273. Rome.
- Shehu, V. (2016). The Earth's Core, an Energetic Cosmic Object. Printed by Create Space, An Amazom.com Company. USA 2016. 80p. https://www.amazon.ca/Earths-Core-Energetic-Cosmic-Object/dp/1512290874.
- Shen, W.B, et al. (2008). The expanding Earth: evidences from temporary gravity fields and space geodesic GEPH. Research Abstracts V. 10 EGU2008-A-0473.
- Shields, O. (1979). Evidence for initial opening of the Pacific Ocean in the Jurassic. Paleogeography, Paleoclimatology, Paleoecology 26, 181-220.
- Shields, O. (1997). Is plate tectonics withstanding the test of time? Annali di Geofisica, Vol XL, 1-8.
- Smiley, C.J. (1992). Plaeofloras, faunas, and continental drift: Some problem areas. In: S. Chatterjee and N. Hotton (Eds). New Concepts in Global Tectonics. Texas Tech. University Press, 241-257.
- Smith, A.G. (2006). Tethyan Ophiolite emplacement, Africa to Europe motion, and Atlantic spreading. In: The Tectonic Development of the Eastern Mediterranean Region. A.H.F. Robertson and D. Mountrakis, (Eds.). (London Geographical Society, Special Publication 260, 1-9.
- Smith, A.G. and Hallam, A. (1970). The fit of the southern continents: Nature, 225, 139-144.

- Smith, A.G. Briden, J.C. and Drewry, G.E. (1973). Phanerozoic World Maps. In Hughes, N.F. Organisms and Continents through time. Special Papers in Palaeontology. 12, 1-43.
- Smith, A.G. Hurley, A.M and Briden, J.C. (1980). Phanerozoic Palaeocontinental World Maps. Cambridge University Press Earth Science Series. 107 pp.
- Smith A. G. Smith D. G. & Funnell B. M. (1994). Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press.
- Soja, C.M. Antoshkina, A.I. (1997). Coeval development of Silurian stromatolite reefs in Alaska and the Ural Mountains: Implications for paleogeography of the Alexander terrane. Geology, 25/6, 539-542.
- Spencer, E.W. (1977). Introduction to the Structure of the Erath. McGraw-Hill, Paperback, 640p.
- Steiner, J., (1967). The sequence of geological events and the dynamics of the Milky Way galaxy. Jour. Geol. Soc. Australia, 14, 99-132.
- Steiner, L. (2014). Von der alpinen Schub- zur Gleitdecke. (From Alpine thrust nappe to downsliding thrust sheet). Z. geol. Wiss., 41-42, 185-196.
- Steinhorsson S., Thoraninsson S. (1997). Iceland. In: Moores E.M. and Fairbridge R.W. (eds.) Encyclopedia of European and Asian Geology. Chapman & Hall, London, 341-352.
- Stern and Gerya (2018) Subduction initiation in nature and models: A review, Tectonophysics 746, 173-198.
- Stevens, G. (1988). John Bradley: a New Zealand pioneer in continental drift studies. Geol. Soc. New Zealand Newsletter, No 17: 30–38. Quoted in Frankel (2012) Volume II.
- Strick, J.E. (2015). Wilhelm Reich, Biologist. Harvard University Press, Cambridge, MA, 487 pp.
- Stille, H. (1936). The present tectonic state of the Earth. Bull. Am. Assoc. Petrol. Geol. 20, 849-80.
- Storetvedt, K.M. (1997). Our evolving planet: Earth history in a new perspective. Alma Mater, Bergen, pp. 456.
- Storetvedt, K.M. (2010). Falling plate tectonics-rising new paradigm: salient historical facts and current tuation. NCGT Newletter, 55, 4-34.
- Strong, D.F. Hanmer, S.K. (1981). The leucogranites of southern Brittany: origin by faulting, frictional heating, fluid flux and fractional melting. Can. Mineralogist, 19, 163-176.
- Strutinski, C. (1987). Strike-slip faults what are they really standing for? General features with exemplifications from the Romanian

Carpathians. Studia Univ. Babes-Bolyai, Geologia-Geographia, XXXII/2, 47-59.

- Strutinski, C. (1990). The importance of transcurrence phenomena in mountain building. In: Critical Aspects of the Plate Tectonics Theory, Volume II (Eds. V. Belousov et al.), Theophrastus Publ. S.A. Athens, 141-166.
- Strutinski, C. (1994). An orogenic model consistent with Earth expansion. In: Frontiers of Fundamental Physics (Eds. M. Barone, F. Selleri), Plenum Press, New York, 287-294.
- Strutinski, C. (1997). Causal Relations between Crustal Transcurrent Systems and Regional Metamorphism, with Reference to the Upper Proterozoic - ?Cambrian Formations of Central Dobrogea. Doctoral Thesis (Unpublished, in Romanian), Universitatea Bucuresti, 288p
- Strutinski, C. (2012). Contradictory aspects in the evolution of life hinting at gravitational acceleration through time. In: The Earth Expansion Evidence. A Challenge for Geology, Geophysics and Astronomy. (Eds.: G. Scalera, E. Boschi, S. Cwojdzinski). Selected contributions to the Interdisciplinary Workshop of the 37th International School of Geophysics EMFCSC, Erice (4-9 October 2011), Aracne Editrice, Rome, 343-364.
- Strutinski, C. (2013). Wachsende Schwerkraft Triebfeder der Evolution? http://www.wachsende-erde.de/webcontent/bilder/strut/Strutinski-Wachsende%20Schwerkraft.pdf
- Strutinski, C. (2015). Zwei Jahrhunderte Geologie. Von Abraham Gottlieb Werner zu Samuel Warren Carey. http://www.wachsendeerde.de/web-content/2_material6strutinski1.html
- Strutinski, C. (2016). Massenextinktionen aus Sicht der Hypothese eines wachsenden Erdballs. http://www.wachsende-erde.de/web-content/bilder/strut/massenextinktionen5.pdf
- Strutinski, C. (2017). An alternative view on subduction zones. Powerpoint presentation at the 2nd International Physics Conference, Brussels, 28-30 August 2017. J. Phys. Chem. Biophys. 7/3 (Abstract), 64. Doi: 10.4172/2161-0398-C1-023.
- Strutinski, C. (2018a). Fragmentation of the northeastern paleo-Indian oceanic domain by a creeping lithospheric current : Evidence from the Ontong Java Plateau. J. Phys. Chem. Biophys. 8 (Abstract), 74. Doi: 10.4172/2161-0398-C2-031.
- Strutinski, C. (2018b). Plattentektonik passé. Wie Mantelströme und Erdwachstum den indopazifischen Raum gestalten. Eigenverlag, Saarbrücken, 127p.

- Strutinski, C. (2019). Orogene auf einer wachsenden Erde ("Vergiss dein Schulwissen die Erde ist anders"). Powerpoint to the Presentation held in the Heiner Studt Studio, Hamburg, 18.10.2019.
- Strutinski, C. Paica, M. Bucur, I. (1983). The Supragetic Nappe in the Poiana Rusca Massif – an argumentation. An. Inst. Geol. Geofiz, LX, 221-229.
- Strutinski, C. Puste, A. (2001). Along-strike shearing instead of orthogonal compression: A different viewpoint on orogeny and regional metamorphism. Himalayan Geol. 22/1, 191-198.
- Strutinski, C. Stan, R. Puste, A. (2003). Geotectonic hypotheses at the beginning of the 21st century. In: Why Expanding Earth? A Book in Honour of Ott Christoph Hilgenberg (Eds. G. Scalera, K.H. Jacob), INGV, Rome, 259-273.
- Stuart, F.M. Lass-Evans, S. Fitton, J.G. and Ellam, R.M. (2003). High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature, 424, 57-59.
- Sudiro, P. (2014). The Earth Expansion Theory and its transition from scientific hypothesis to pseudoscientific belief. History of Geo-and Space Sciences, No 135-148. Web: https://www.hist-geo-space-sci.net/5/135/2014/hgss-5-135-2014.pdf.
- Suess, E. (1889). Dass Antilitz der Erde, 2, Pt. 3, Die mere der Erdee, Vienna. 704p.
- Sullivan, W. (1974). Continents in motion; the new Earth debate. New York, NY: McGraw-Hill.
- Sylvester, A.G. (1988). Strike-slip faults. Geol. Soc. Am. Bull. 100, 1666-1703
- Szpak, S. Mosier-Boss, P. Gordon, F. Dea, J. Miles, M. Khim, J. Forsley, L. (2008). LENR research using co-deposition. In Proc. the 14th Int. Conf. on Condensed Matter Nuclear Science, Washington, DC (pp. 766–771).
- Tarling, D.H. Runcorn, S.K. (1973). Implications of Continental Drift to the Earth Sciences. (NATO Advanced Study Institutes) Symposium, University of Newcastle, England April 1974. Academic Press. Volume 2, 1184 pp.
- Tchalenko, J.S. (1970). Similarities between shear zones of different magnitudes. Geol. Soc. Am. Bull. 81, 1626-1640.
- Tchudinov, J.W. (1998) Global Eduction Tectonics of the Expanding Earth. VSP. Utrecht, the Netherlands.
- Tebbe, J. (1980). Print and American culture. American Quarterly, 32(3), 259–279.

- Tharp, M., Frankel, H. (1986). Mappers of the deep. Natural history. New York NY, 95(010), 48-48.
- Thompson, D.W. (1917/1966). On Growth and Form. Cambridge University Press, xiv + 346 pp.
- Thomson, W. (1854). Thermo-electric currents. Trans. Roy. Soc. Edinburgh, 21, 123-171.
- Turcotte, D.L., Oxburgh, E.R. (1973). Mid-plate Tectonics, Nature 244, 337-339.
- Tuttle, R.J. (2012). The Fourth Source: Effects of Natural Nuclear Reactors. Universal Publishers, 580p.
- Van Andel, T.H. 1984. Plate Tectonics at the threshold of middle age. Geologie en Mijnboaw, 63, 337-341.
- Vanderhaeghe, O., Teyssier, C. (1997). Formation of the Shuswap metamorphic core complex during late orogenic collapse of the Canadian Cordillera: Role of ductile thinning and partial melting of the mid- to lower crust. Geodinam. Acta, 10/2, 41-58. Doi: 10.1080/09853111.1997.11105292
- Vanderhaeghe, O., Burg, J.P., Teyssier, C. (1999). Exhumation of migmatites in two collapsed orogens: Canadian Cordillera and French Variscides. In: Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (Eds. U.Ring, M.T. Brandon, G.S. Lister, S.D. Willett), Geol. Soc. London, Spec. Publ. 154, 181-204.
- Van der Voo, French, A.R. (1974). Apparent polar wandering for the Atlantic-bordering continents: Late Cambrian to Eocene. Earth Science Review. 10, 99-119.
- Van Hinsbergen, D.J. Steinberger, B. Doubrovine, P. V. and Gassoller, R. (2011). Acceleration and deceleration of India-Asia convergence since Cretaceous: Roles of mantle plumes and continental collision. Jour. Geophysics Research, 116, doi: 10.1029/02010JB 008081.
- Van Steenis, C.G.G.J. (1963). Pacific Plant Areas, Vol. 1, Monograph 8, Manila: Natonal Institute of Science and Technology.
- Vauchez, A. Nicolas, A. (1991). Mountain building: strike-parallel motion and mantle anisotropy. Tectonophys. 185, 183-201
- Veevers, J.J., Powell, C. McA. and Johnson, B.D. (1980). Sea-floor constraints on the reconstruction of Gondwanaland. Earth and Planetary Science Letters. 51, 435-444.
- Verhoogen, J. (1980). Energetics of the Earth. National Academy of Sciences, Washington, D.C. 139p.
- Verma, O. and 4 Others. (2016). Historical biogeography of the Late Cretaceous vertebrates of India: Comparison of Geophysical and

Paleontological data. In: A. Khosla and S. G. Lucas (Eds).Cretaceous Period Biotic Diversity and Biogeography. Bull. New Mexico Museum Natural History and Sciences, 71, 317-330.

- Vine, F.J., Matthews, D.H. (1963). Magnetic Anomalies over Oceanic Ridges. Nature London 199, 947-949.
- Vogel, K. (1983). Global Models and Earth expansion. In Carey, S.W. The Expanding Earth – A Symposium. Sidney, 1981. University of Tasmania 17-27.
- Vogel, K. (1984). Beiträge zur Frage der Expansion der Erde auf der Grundlage von Globenmodellen. Z. geol. Wiss. 12, 563-573.
- Vogel, K. (1990). The expansion of the Earth an alternative model to the plate tectonics theory. In: Critical Aspects of the Plate Tectonics Theory; Volume II, Alternative Theories. Theophrastus Publishers, Athens, Greece, 14-34.
- Vogel, K. (2003). Global models of the expanding Earth. In Scalera, G and Jacob, K-H. (Editors) 2003. Why Expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV publisher Roma, 351-356.
- Vogel, K. (2012). Contribution to the Question of Earth Expansion Based on Global Models. In: The Earth Expansion Evidence, A challenge for geology, geophysics and astronomy. "Selected Contributions to the Interdisciplinary Workshop," (held in Erice, Sicily, Italy 4-9 October. 2011). Post-conference publication edited by GiacarloScalera (editor in chief), EnzoBoschi, and Stefan Cwojdziñski. 161-172. Rome.
- Wallin, E.T. Noto, R.C. Gehrels, G.E. (2000). Provenance of the Antelope Mountain quartzite, Yreka Terrane, California: Evidence for large-scale late Paleozoic sinistral displacement along the North American Cordilleran margin and implications for the mid-Paleozoic fringing-arc model. Geol. Soc. Am. Bull. Spec. Paper 347, 119-131. Doi: 10.1130/0-8137-2347-7.119.
- Walther, H.J., von Gehlen, K., Haditsch, G., Maus, H.J. (1999). Lagerstättenkundliches Wörterbuch. GDMB, Clausthal, 688 pp.
- Wang C. Jin A. (2006). Mechanism of the Mafic Dyke Swarms Emplacement in the Eastern Block of the North China Craton. In: Hou G. and Li J. (eds.) Precambrian Geology of the North China Craton. Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, vol. 24, paper 3, doi:10.3809/jvirtex.2006.00161.
- Wegener, A. (1912). Die Entstehung der Kontinente und Ozeane. Geologische Rundschau 3, 276-292.

- Wegener, A. (1912). The Origins of continents and oceans. (Dover Earth Science: 1915). Originally presented at A Yearly Meeting of the German Geological Society (6 January, 1912).
- Wegener, A. (1915). Die Entstehung der Kontinente und Ozeane (The Origin of Continents and Oceans). Sammlung Vieweg Nr. 23, Braunschweig, 94p.
- Wegener, A. (1924). The Origin of Continents and Oceans. (trans. 3rd ed.). Methuen, London; Dutton & Co. New York, pp.212.
- Wegener, A. (1966). The origin of continents and oceans (trans. 4rd ed.). Dover Publications, New York.
- Welsh, W.E. Doyle, L.R. (2013). World with two stars. Scientific American 309 (5): 4. (Nov. 2013). 40-47. DOI: 10. l038/scientific American 1113-40.
- Wenbin S, and Sung-Ho, N. (2017). Atmospheric acceleration and Earth expansion deceleration of the Earth rotation. Geodesy and Geodynamics. 8, 421-426.
- Wertenbaker, W. (1974). The Floor Of The Sea: Maurice Ewing and the Search to Understand the Earth. ISBN: 978-0316931212.
- Wilhelm Reich Infant Trust. https://www.wilhelmreichtrust.org/biography.html.
- Winchester, S. (2001). The map that changed the world. Viking, pp.338.
- Wingate, M.T.D., Pisarevsky, S.A., Evans, D.A.D. (2002). Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS?, Terra Nova 14, No. 2, 121-128.
- Wood, J.A. (1968). Meteorites and the origin of planets. New York: The McGraw Hill Companies, 117.
- Wood, R.M. (1979). Is the Earth getting bigger! Some geologists believe that our world is expanding. New Scientist 8 February 1979. p 387-388.
- Wood, R.M. (1985). Dark Side of the Earth. Harper Collins Publishers.
- Wright, L.A. Troxel, B.W. (1969). Chaos structure and Basin and Range normal faults: Evidence for a genetic relationship. Geol. Soc. Am. Abstracts with Programs, 1/7, 242.
- Wright, L.A. Troxel, B.W. (1973). Shallow fault interpretation of Basin and Range structure, southwestern Great Basin. In: Gravity and Tectonics (Eds. K.A. de Jong, R. Scholten), Wiley, New York, 397-407.
- Xiao W., Songlian A O., Yang L, Chunming H Bo W, Zhang J E, Zhang, Z Y, Rui L, Zhan Yu C and Soong S H (2017) Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision. China Earth Sciences, 60, 1015-1039.

- Yano, T. Vasiliev, B.I. Choi, D.R. et al. (2011). Continental rocks in Indian Ocean. NCGT Newsletter 58, (Australia NGCT.org, 2011). 09-28.
- Yuecheng, C. et al. (1998). A new interpretation of the Himalayan orogenic belt. Chinese Science Bulletin, 43.1, 83-84. DOI: 10.1007/BF02885523.
- Young, C. J. Lay, T. (1987). The core-mantle boundary. Earth Planet Science Annual Review, 15, (1987).25-46.
- Young, T.E. (2010). Cloudy with a chance of stars. Scientific American V. 302. 34-41.DOI:10.1038/scientific American 0210-34.
- Zagorevski, A. et al. (2008). Tectonic architecture of an arc-arc collision zone, Newfoundland Appalachians. Annals of Geophysics, Supplement to V.49, No. 1. Special Paper #436 in Draut A. Clift, P.D. and D.W. Scholl (Eds.). Formation and application of the sedimentary record in arc collision zones. (Boulder, CO: Geographical Society of America, Inc. Special Paper #346,). 309-334.
- Zheng, H. Powell, C.M. Zhou, Z.A.J. Dong, G. (2000). Pliocene uplift of the northern Tibet Plateau. Geology, 28, 715-718.
- Zolensky, M.E. et al. (2006). Mineralogy and petrology of Comet 81 P/Wild 2 Nucleus Samples. In Science, V. 314, No. 5806. (Stanford, CA: Highwire Press, 2006).1735-1739.